

GUIDE DE L'UTILISATEUR DU LOGICIEL

Formation et Technologie pour le Moulage par Injection

Date d'Impression

05.20.2025

Rev

v10.1.0

Copilot® Tous droits réservés. © 2025 RJG, Inc.

Table des Matières

Introduction

Clause de Non-Responsabilité	iV
Confidentialité	iv
Alertes	
Présentation du Produit	iv
Configuration Minimale	V
Icônes et navigation dans le logiciel	Vi
Types de Notifications Logicielles	Viii
Catégories de Notifications de Logiciels	Viii
Utilisateur en Ligne	iX
Tableau de Bord CoPilot	X
Conventions de Dénomination des Machines, des Moules et des Process	Xii
Entrées et sorties «Type» et «Emplacement»	Xii

Configuration

9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Première Configuration	1
Langue du Système	1
Réglage de Machine	
Les Champs Personnalisés	
Paramètres de la Machine	4
Affecter des Entrées	5
Attribution des Détails du Modèle	20
Affectation des Sorties	21
Base de la Vis	26
Pression d'Injection	27
Configuration du Moule	28
Réglages du moule	29
Noms des cavités	
Noms des Obturateur	31
Affectations des Cavités à Obturateur de Seuil	32
Plaques de Moule	33
Entrées Moule	34
Détails du modèle	35
Détails de l'éjecteur	36
Sorties Moule	37
Résumé de la Configuration	39

Configuration(suite)

Configuration du Process	
Paramètres Process	
Options de Tri	
Réglages Généraux	
Options de Pilotage	
Modèle de Correspondance et Conseils avec MAX.	
Erreurs de Configuration	
Déconnexion du Hub	48
Tableau de Bord de Configui	ration
Configuration des Cartes du Tableau de Bord	49
Vis de Réglage Inférieure du Tableau de Bord de Co	
Définir la Durée de la Période d'Intégration à Partir d	des
Paramètres Avancés, Tableau de Bord de Configura	
Tableau de Bord	
Vue d'Ensemble du Travail	53
Valeurs de Process	53
Informations de configuration	57
Paramètres d'Alarme	58
Sélection d'Alarme	59
Réglage des Alarmes	62
Retirer une Alarme	67
Limites d'Avertissement	68
Graphe de Cycle	69
Courbes de Données de Cycle	69
États de Séquence de la Machine	
Commandes du Graphique de Cycle	
Régler le volume de remplissage au curseur	
Courbes de Graphe de Cycle de Surveillance	
Courbe de Pression d'Injection	
Course d'Injection / Courbe de Volume	
Courbes de Pression de la Cavité Après la Porte	

Tableau de Bord (suite)

Courbes de Fression a Mi-Cavite	/ 0
Courbes de Pression de Fin de Cavité	79
Modèles de Processus de Graphe Cyclique	80
Modèles de Référence de Graphiques de Cycle	
Cycles de Superposition de Graphiques	
Erreurs du Capteur de Graphique de Cycle et Données	
Manquantes	87
Association de Modèles	88
Tolérance Définie (Variation Normale du Processus)	90
Correspondance du Moule	91
Correspondance de la machine	92
Association Matière	93
Modifier les Pourcentages de Association du Modèle	94
Tourner la Association du Modèle Allumé/Eteint	94
Conseils avec MAX	95
Configuration Minimale	95
Conseils avec MAX Activation	96
Vérifications Générales	97
Conseils de Démarrage avec MAX	98
Conseils avec MAX	99
Notes de conseils	101
Conseils avec MAX Interruptions	102
Graphique Récapitulatif	103
Tendances des Données Cycliques	103
Commandes du Graphique Récapitulatif	
Comparaison des Cycles du Graphique Récapitulatif aux Actuels	Cycles
Graphique Récapitulatif des Erreurs du Capteur et des D	
Manquantes	
Tableau des Valeurs du Cycle Précédent	
Ajouter les Valeurs du Cycle Précédent	
Supprimer les Valeurs de Cycle Précédentes	
Temps de Remplissage de la Cavité	
Pression de Pointe: Fin de la Cavité	H8

Tableau de Bord (suite)

Contrôle de la Vitesse à la Pression (V \rightarrow P)	119
Contrôle	120
Ajouter des Commandes $V \rightarrow P$	121
Modifier ou supprimer des commandes $V \rightarrow P$	123
Erreurs V→P	
Contrôle d'Obturateur de Seuil	126
Écran de vue en quart de commande d'obturateur de seu	uil du
tableau de bord des tâches	
Tableau de Bord des Tâches Écran Plein Ecran	
Configuration du Contrôle d'Obturateur de Seuil	
Outils de Contrôle d'Obturateur de Seuil	
Réglages Généraux du Contrôle d'Obturateur de Seuil	
Chauffage et Refroidissement	
Activation des Commandes de Chauffage et de Refroidis	sement
136	
Configuration de Chauffage et de Refroidissement	
Échantillonneur de Pièces	
Versions de Pièces	
Types d'Echantillons	
Tri des Echantillons de Pièces	
Prélèvement d'Echantillons de Pièces	
Notes	145
Ajouter Une Nouvelle Note	
Écrans d'Etat d'Inactivité	147
Cycle Accepté	147
Avertissement de Cycle	148
Cycle Rejeté	149
Machine en Panne	
Normalisation des Valeurs de Processus	151
Positions ou Volumes	151
Vitesses ou Flux Volumétriques	152
Pression Hydraulique ou Pression Plastique	
Erreurs de Traitement	153
Rebuts Excessifs	153
Coussin Négatif Détecté	154
Activer l'injection Désactivé	155
Temps de Cycle Dépassé	156
Erreursde Séquence	
Erreurs de Communication du Capteur	158

Entrée de Note

Note Générale	159
Remarques pour les Raison du Changement du	
Process	159
Remarques sur le Numéro de Contrôle des Modific	
de Processus	160
Protocoles de Procédés	
Afficher le Journal	161
Réglages	
Paramètres CoPilot	162
Paramètres Système	162
Réglages réseau	163
Logiciel du Système	164
Autorisations des Rôles d'Utilisateur & Sécurité	166
\ ide	
Aide CoPilot et Rapport de Problèmes	167
Guide de l'utilisateur	
Signaler un problème	167
Diagnostique	168
Paramètres Avancés: Activation du Temps de Rempliss	age
Rapide	
Réglage avancé : Mise à Zéro du Capteur Piézoélectric	-
Paramètre avancé : Calendrier de la période d'intégrati	on1/5

Appendice

Applications de contrôle d'obturateur de seuil	176
Application d'obturateur de seuil séquentiel	
Contrôle indépendant de la cavité	
Techniques additionnelles de contrôle d'obturateur de seuil	179
Démarrage « en marche »	
Pression Décharge	
Contrôle alternatif de la cavité	179
Glossaire	
Fois	186
Temps de Refroidissement	
Temps de Cycle	
Temps de Remplissage	
Temps d'Emballage/d'Emprise	
Temps de Reprise	
Courses	
Matelas	
Décompression	187
Taille d'Injection	187
Position de Transfert	
Pressions	188
Pic Moyen	188
Contre-Pression	188
Equilibre de Pointe	188
Pression de Remplissage	188
Pression de Maintien	188
Crête	188
Pression du Plastique	
Viscosité effective	
Viscosité de la Matière	
Formules	
Rapport d'Intensification (Ri)	
Pression du Plastique	
Viscosité Effective	
Sigma (Ecart Type)	
MOULAGE DÉCOUPLÉ (DECOUPLED MOLDING®)	
MOULAGE DÉCOUPLÉ II	
MOULAGE DÉCOUPLÉ III	
Intégrales	
Cycle Intégral	
Injection Intégrale	193

Introduction

Lisez les instructions suivantes et assurez-vous de les comprendre et de vous y conformer.

Clause de Non-Responsabilité

Étant donné que RJG, Inc. n'exerce aucun contrôle sur l'utilisation que des tiers pourraient faire de cet équipement, elle ne garantit pas l'obtention des résultats similaires à ceux décrits dans la présente. RJG, Inc. ne garantit pas non plus l'efficacité ou la sécurité d'une conception éventuelle ou proposée des articles manufacturés illustrés dans la présente par des photographies, des schémas techniques et d'autres éléments similaires. Chaque utilisateur du produit ou de la conception ou des deux doit mener ses propres tests afin de déterminer l'adéquation du produit ou de tout produit à la conception ainsi que l'adéquation du produit, du procédé et/ou de la conception à l'utilisation spécifique qu'il veut en faire. Les déclarations portant sur des utilisations ou des conceptions éventuelles ou proposées et décrites dans la présente ne doivent pas être interprétées comme constituant une licence en vertu d'un brevet de RJG, Inc. couvrant une telle utilisation ni comme des recommandations d'utilisation d'un tel produit ou de telles conceptions en violation d'un brevet.

Confidentialité

Conçu et développé par RJG, Inc. Conception, format et structure du manuel, copyright 2025 RJG, Inc. Documentation du contenu, copyright 2025 RJG, Inc. Tous droits réservés. Les éléments contenus dans la présente ne sauraient être copiés, en tout ou en partie, manuellement, encore moins sous forme mécanique ou électronique sans le consentement écrit express de RJG, Inc. Le présent produit peut être utilisé en conjonction avec un usage intersociété qui n'entre pas en conflit avec les meilleurs intérêts de RJG.

Alertes

Les trois types d'alertes suivants sont utilisés selon les besoins pour clarifier davantage ou souligner certaines informations figurant dans le manuel :

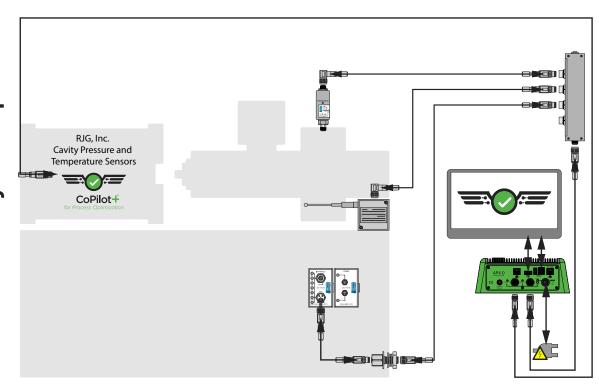
- DEFINITION Définition d'un ou de plusieurs terme(s) utilisé(s) dans le texte.
- (i) **REMARQUE** Une remarque devra présenter les informations complémentaires concernant un sujet de discussion.
- ✓ MISE EN GARDE Une mise en garde doit être utilisée pour informer l'opérateur de conditions susceptibles d'endommager l'équipement et/ou de blesser des membres du personnel.

Présentation du Produit

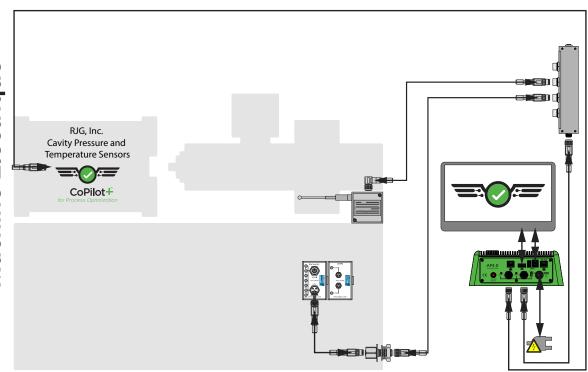
Le logiciel CoPilot® fournit les éléments suivants:

• Aperçu des Performances des Processus

· Journaux de Modification de Process



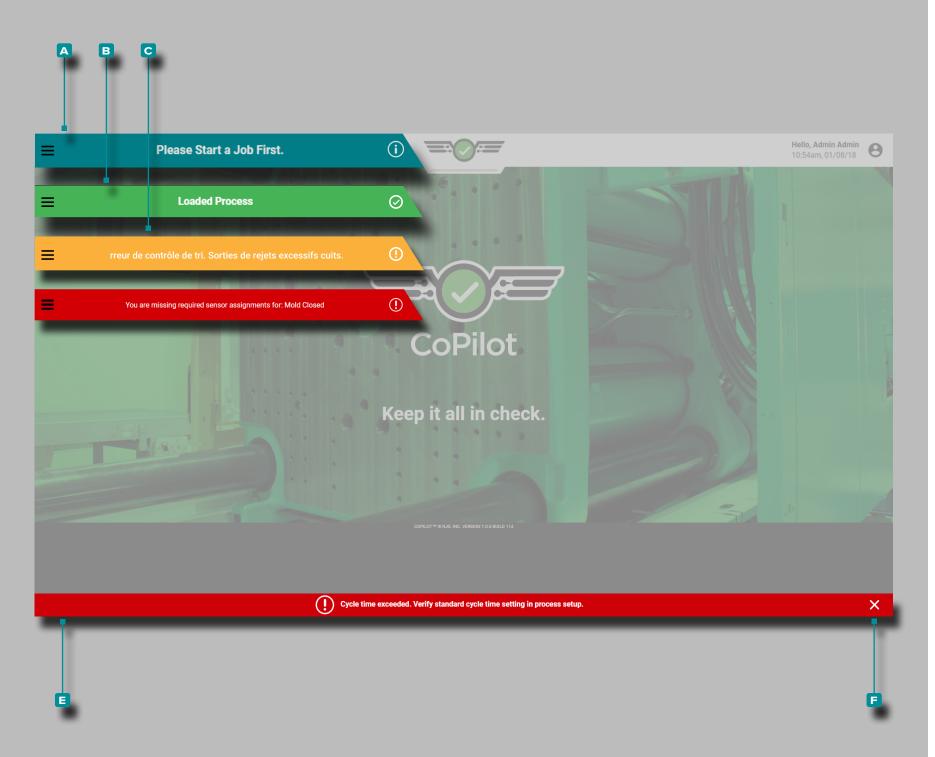
Configuration Minimale


Pour utiliser ce produit, les éléments suivants sont requis :

RJG, Inc. Le CoPilot incluant le processeur AP4.0 avec des interfaces de capteurs $Lynx^{\text{\tiny M}}$ et des connecteurs Lynx nécessaires à la connection avec les composants de la machine à injecter. Reportez-vous au *Guide d'installation et de configuration du matériel CoPilot* pour plus d'informations sur les composants.

Configuration de la Machine Hydraulique

Configuration de la Machine Electrique



Icônes et navigation dans le logiciel

Les symboles suivants détaillent les symboles couramment utilisés et leurs fonctions dans le logiciel CoPilot.

8	Utilisateur	Appuyez sur l'objet pour afficher les informations sur l'utilisateur.	900	Réglages	Appuyez sur l'objet pour afficher ou modifier les paramètres.	0	Erreur	L'objet indique qu'une erreur s'est produite.
	Menu	Appuyez sur l'objet pour ouvrir le menu du logiciel.	3	Aide	Appuyez sur l'objet pour afficher les guides de l'utilisateur du logiciel ou du matériel, ou pour signaler un problème.	•	Créer un Nouveau	Appuyez sur l'objet pour créer une nouvelle machine, moule ou process.
	Configuration	Appuyez sur l'objet pour ouvrir le tableau de bord de configuration.	X	Quitter la Fe- nêtre	Appuyez sur l'objet pour quitter une fenêtre ou un menu ouvert.		Désélection- ner	Appuyez sur l'objet pour enlever/ désélectionner l'élément.
o	Tableau de Bord	Appuyez sur l'objet pour afficher le process		Modifier l'Objet	Appuyez sur l'objet à modifier.	\\	Réduire / Développer	Appuyez sur la flèche vers le haut pour réduire la fenêtre; appuyez sur la flèche vers le bas pour agrandir la fenêtre.
9	Journaux de Modification de Process	Appuyez sur l'objet pour afficher le process.	0	Informations	Appuyez sur l'objet pour afficher plus d'informations.	7	Filtre	Appuyez sur le champ qui contient l'objet, puis saisissez un terme ou une phrase pour filtrer les résultats.
	Entrée de Note	Appuyez sur l'objet pour saisir une note de process pendant l'exécution d'un travail.		Succès	L'objet indique une opération réussie.	•••	Sélection de la Plage Horaire	Appuyez, maintenez et faites glisser une extrémité pour élargir / raccour- cir la période sélectionnée; appuyez, maintenez et faites glisser le milieu pour déplacer la période sélectionnée.

Types de Notifications Logicielles

Les notifications logicielles peuvent être des notifications temporaires ou des notifications persistantes.

Notifications Temporaires

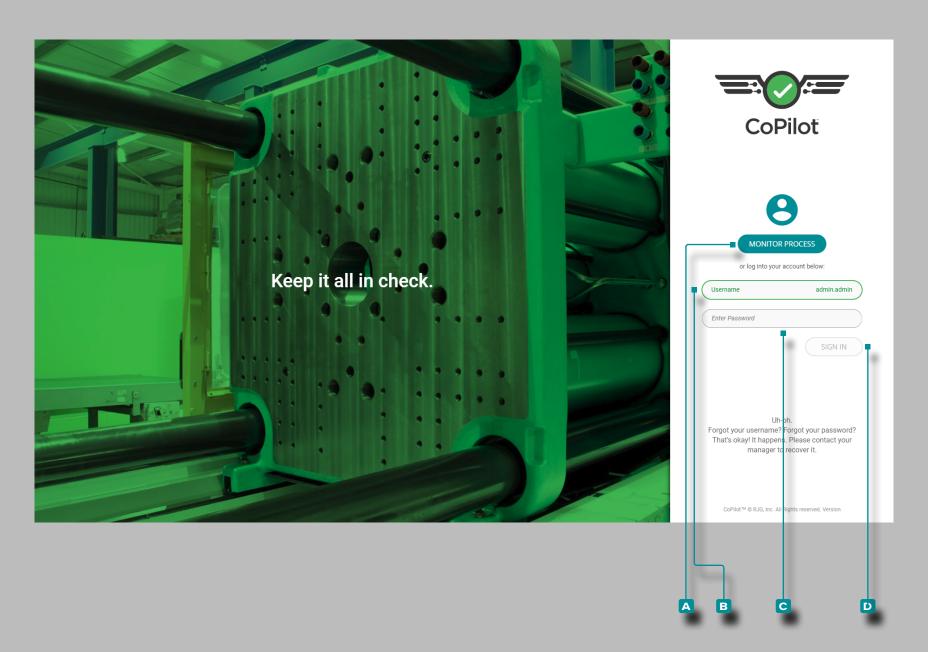
Notifications temporaires A, B, C, & D apparaissent dans la partie supérieure gauche de la barre de menu et disparaissent sans confirmation de l'utilisateur.

Notifications Persistantes

Les notifications persistantes **E** apparaissent en bas de l'écran et resteront affichées jusqu'à ce que l'utilisateur reconnaisse le message; cela peut nécessiter que l'utilisateur effectue certaines actions décrites dans le message.

(i) **REMARQUE** Les notifications contenant trop de caractères pour tenir dans la zone de la barre de menu supérieure s'afficheront comme des notifications persistantes, en bas de l'écran.

Catégories de Notifications de Logiciels

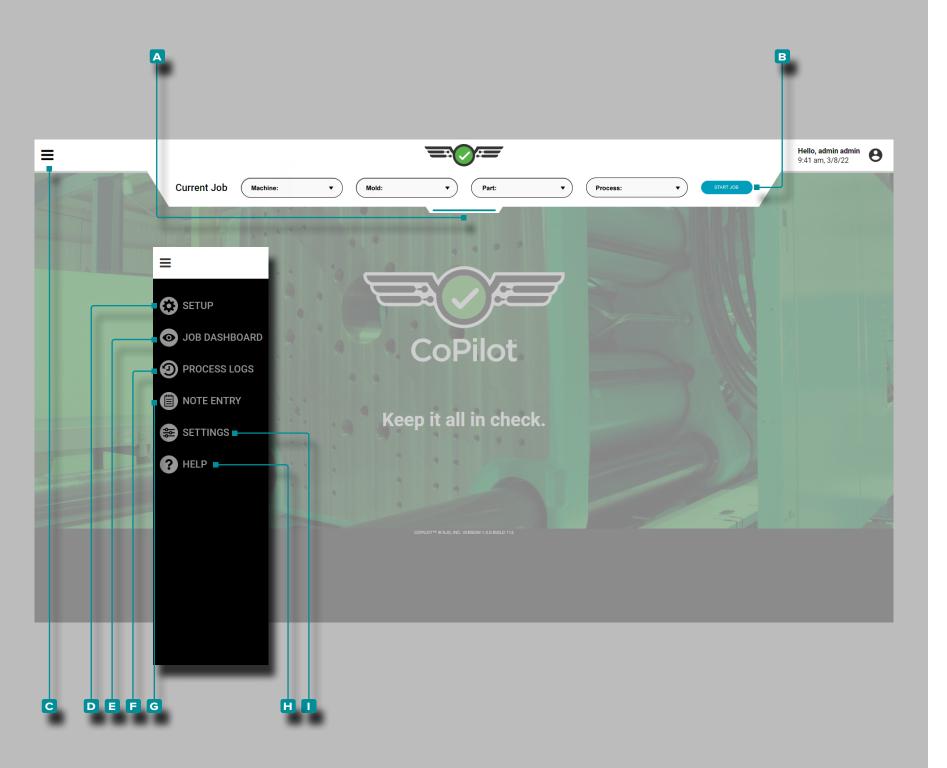

Parmi les deux types de notifications (temporaires et persistantes), les notifications sont divisées en catégories suivantes :

- Informations
- Succès
- Erreur
- Avertissement

Les notifications de réussite **B** apparaissent comme une confirmation de toute modification ou commande effectuée dans le logiciel; les notifications de réussite sont vertes.

Des notifications d'erreur C et d'avertissement D apparaissent en raison d'entrées manquantes ou incorrectes, de sorties manquantes ou incorrectes ou d'erreurs logicielles générales ; les notifications d'erreur et d'avertissement peuvent être rouges ou jaunes, selon l'urgence de l'action requise. Lisez l'erreur pour déterminer le type d'erreur ; si nécessaire, effectuez l'action corrective requise.

Appuyez sur & l'icône de F sortie pour supprimer la notification persistante de l'écran.



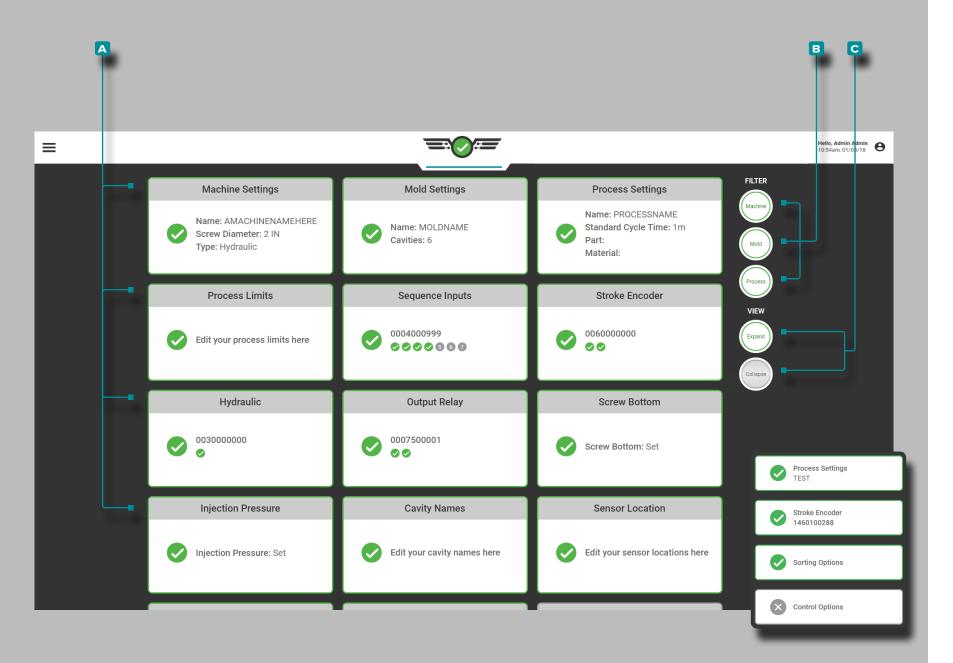
Utilisateur en Ligne

Le logiciel CoPilot oblige les utilisateurs à se connecter avec un nom d'utilisateur et un mot de passe avant utilisation. Un utilisateur peut appuyer appuyer sur le bouton de surveillance de process pendant qu'une tâche est en cours pour surveiller le process, cependant, aucune modification n'est autorisée tant que la connexion n'est pas terminée.

Saisissez | un B nom d'utilisateur et un C mot de passe, puis appuyez sur le bouton de connexion pour terminer la connexion et afficher le tableau de bord, *OU* appuyez sur le bouton du surveillance de process pour afficher le processus en cours.

(i) REMARQUE L'accès individuel aux fonctionnalités et fonctions est déterminé par le rôle d'utilisateur attribué lors de la configuration du système CoPilot et du logiciel Hub. Si une fonctionnalité ou une fonction n'est pas disponible, veuillez vérifier les autorisations du rôle utilisateur avant de soumettre un rapport d'erreur. Les autorisations des rôles utilisateur pour le système CoPilot sont gérées sur le logiciel Hub; reportez-vous au Guide de l'utilisateur du logiciel Hub pour connaître l'intégralité des autorisations des rôles utilisateur.

Tableau de Bord CoPilot


Le tableau de bord CoPilot permet d'accéder aux utilitaires de configuration (machine, moule et process), au tableau de bord des travaux (surveillance de process), au journal de process, aux paramètres du logiciel et à l'aide du logiciel.

Appuyez, maintenez enfoncé et faites 🖢 glisser le 🔼 menu déroulant, puis sélectionnez une 🖪 machine, un moule, une pièce ou un processus pour charger une configuration enregistrée ou pour créer une nouvelle machine, un moule ou un processus.

Appuyez sur le bouton de menu, puis sélectionnez Configuration pour afficher le tableau de bord de configuration, ou appuyez sur le tableau de bord des travaux pour afficher un process en cours et des valeurs, ou appuyez sur le bouton de menu, puis sélectionnez les journaux de process pour afficher ou exporter les journaux de changement de process.

Appuyez sur le bouton de menu, puis sélectionnez Saisie de notes pendant l'exécution d'une tâche pour saisir une note de process.

Appuyez sur le bouton de menu, puis sélectionnez Paramètres pour accéder aux paramètres du logiciel. Appuyez sur le bouton de menu, puis sélectionnez Aide pour accéder à l'aide du logiciel.

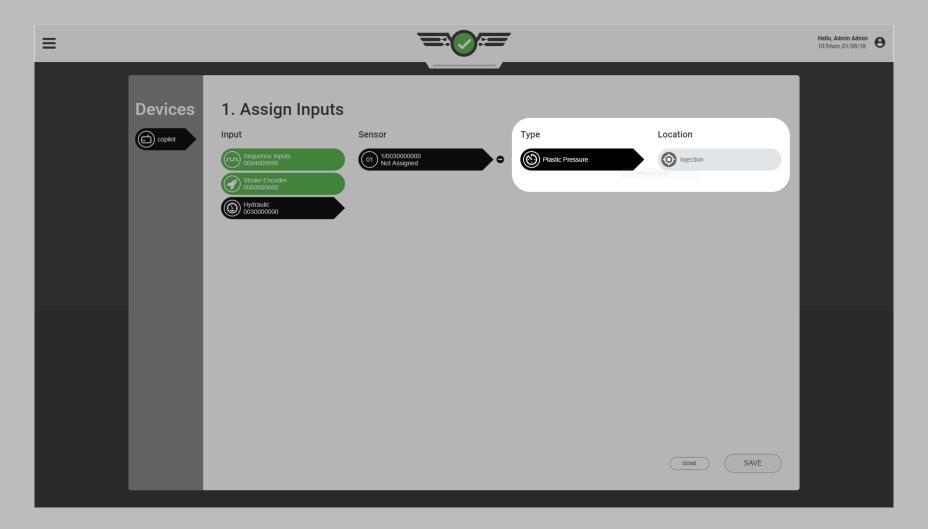
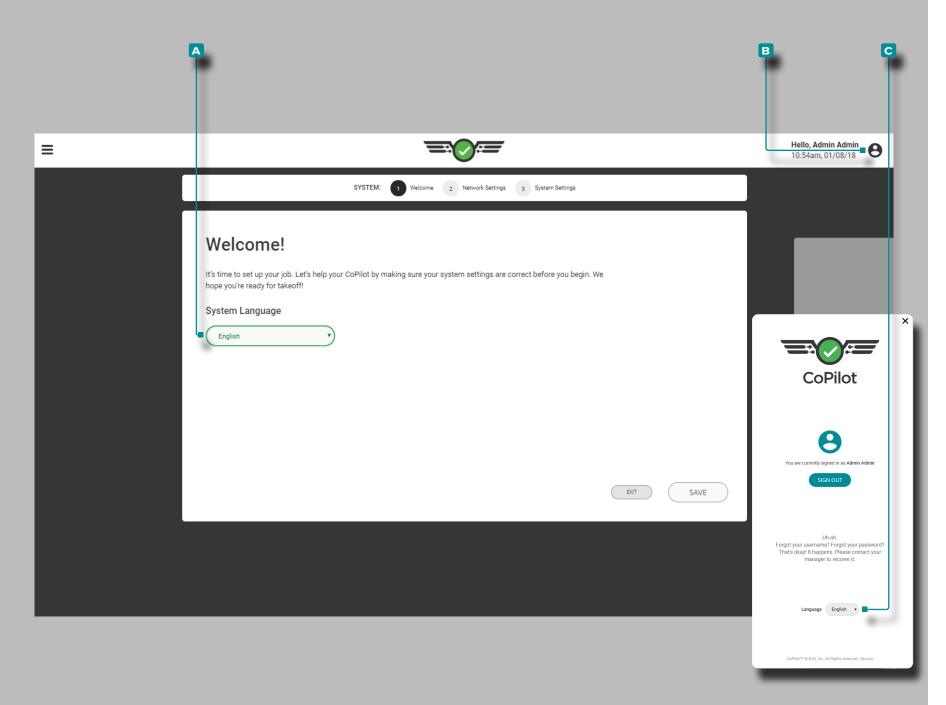


Tableau de Bord (suite)

Le tableau de bord de configuration affichera des A cartes détaillant les paramètres actuels de la machine, du moule et du process.

Appuyez & sur une A carte pour afficher et / ou modifier rapidement le paramètre sélectionné.

Appuyez sur le (s) bouton (s) Machine, moule ou B filtre de process pour afficher ou masquer les cartes associées; appuyez sur les boutons Développer ou Réduire C la vue pour afficher plus ou moins d'informations sur les cartes.


Conventions de Dénomination des Machines, des Moules et des Process

Il est recommandé de créer une norme de dénomination pour la saisie des noms de machine, de moule et de process dans le logiciel. Un moule nommé «M 248» (avec un espace) est différent du moule «M248» (sans espace) ; il en va de même pour les machines, les cavités, les identifiants de capteur et les process. Si la configuration n'est pas cohérente, les paramètres d'alarme et les limites de process ne seront pas disponibles lorsqu'un travail est redémarré avec un nom légèrement différent.

Entrées et sorties «Type» et «Emplacement»

Chaque «capteur» d'entrée ou de sortie doit être configuré avec un type et un emplacement dans le logiciel. Ces deux éléments permettent au logiciel de décider quoi faire des données provenant du capteur à l'aide des détails de mise à l'échelle et d'étalonnage.

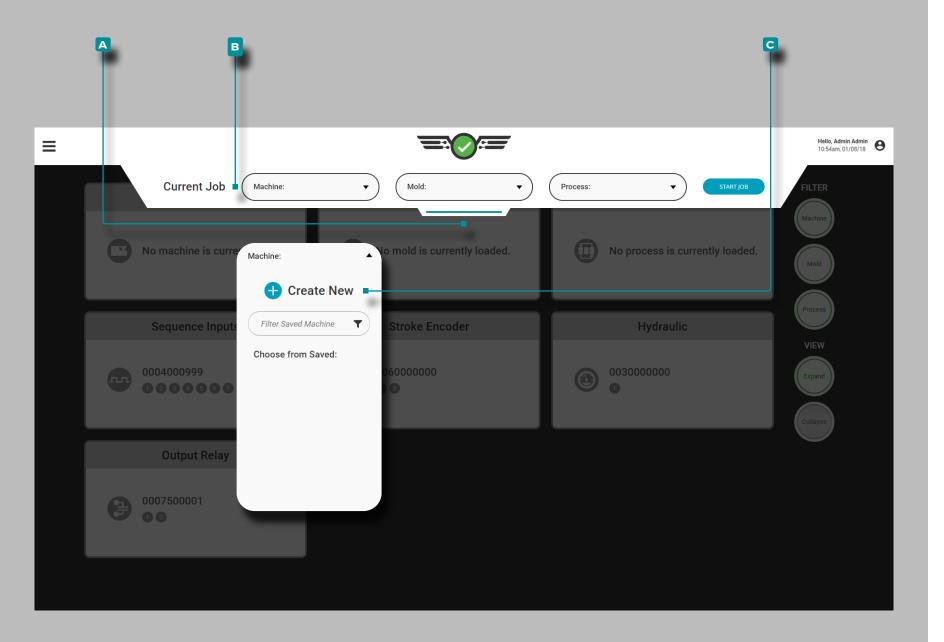
Le Type quelle valeur est mesurée par le capteur. Par exemple, un type de capteur hydraulique est «pression plastique» car il mesure la pression hydraulique et la convertit en pression plastique. L'emplacement est l'endroit où le capteur est physiquement situé; par exemple, un emplacement de capteur hydraulique est «injection» car il est situé

Configuration

Première Configuration

Lors du démarrage initial, le logiciel CoPilot commencera une configuration système guidée pour la première fois. La première configuration inclut la langue du système, les paramètres réseau et le logiciel système.

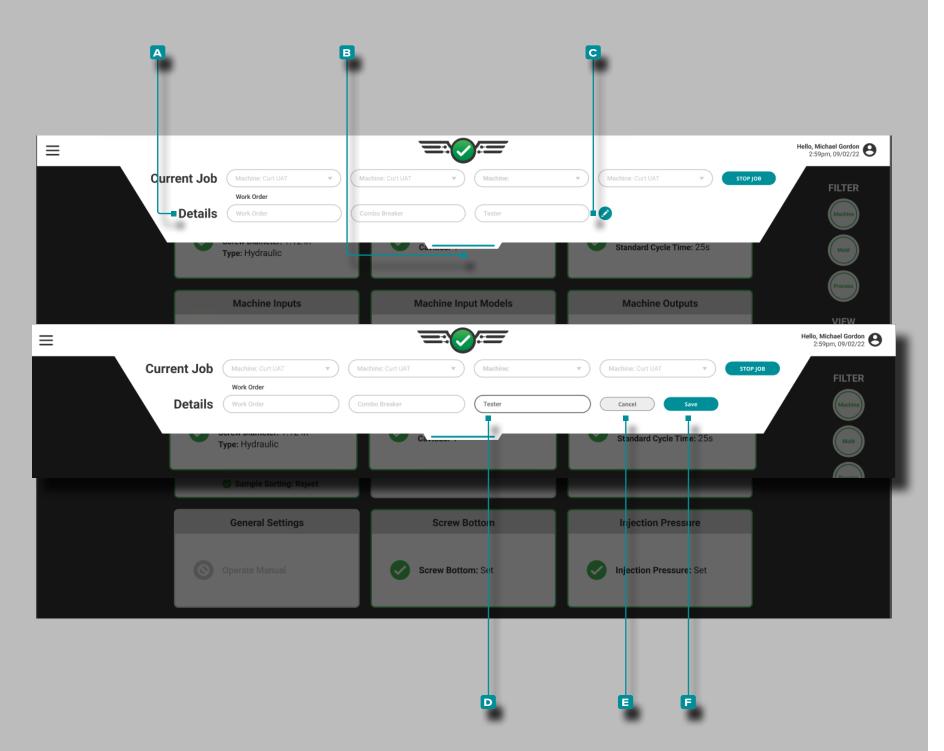
Langue du Système


Le logiciel CoPilot est disponible pour une utilisation dans les langues suivantes : anglais, chinois (simplifié), français, allemand et espagnol (Mexique).

La Configuration Initiale

La langue du logiciel système souhaitée est sélectionnée lors du démarrage initial lors de la première configuration. Appuyez four sélectionner la langue du logiciel souhaitée dans la liste déroulante fournie.

Changement de Langue

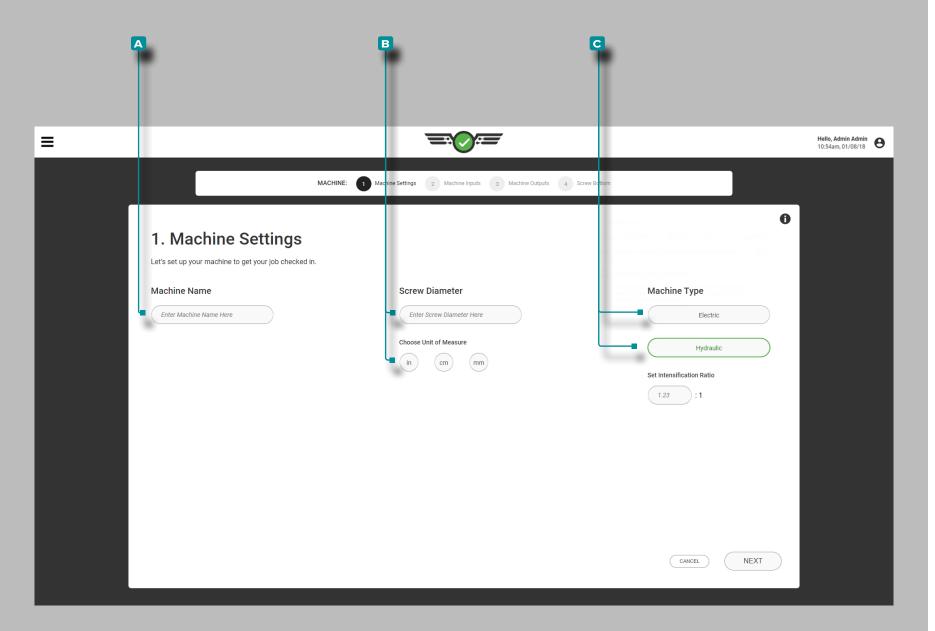

Pour changer la langue du logiciel système sélectionnée une fois la configuration terminée, appuyez a sur la l'icône utilisateur, puis sélectionnez la c langue du logiciel souhaitée dans la liste déroulante fournie.

Réglage de Machine

Appuyez , maintenez et faites glisser le A menu déroulant pour accéder à la configuration de la machine. Appuyez sur le menu déroulant B Machine, puis appuyez sur pour sélectionner l'option Créer une nouvelle machine.

La configuration de la machine comprend les paramètres, les entrées, les sorties, le fond de la vis et, le cas échéant, la mise à zéro de la pression d'injection (machines hydrauliques uniquement). Une fois qu'une machine est configurée, elle peut être chargée ou enregistrée pour une utilisation future.

Les Champs Personnalisés


Des champs personnalisés A peuvent être ajoutés depuis The Hub®) à la configuration, située dans le B menu déroulant ; Les A champs personnalisés sont utilisés pour enregistrer des informations supplémentaires des systèmes CoPilot pour les afficher sur le Hub. Le remplissage de A champs personnalisés peut ou non être requis selon les paramètres configurés sur le Hub.

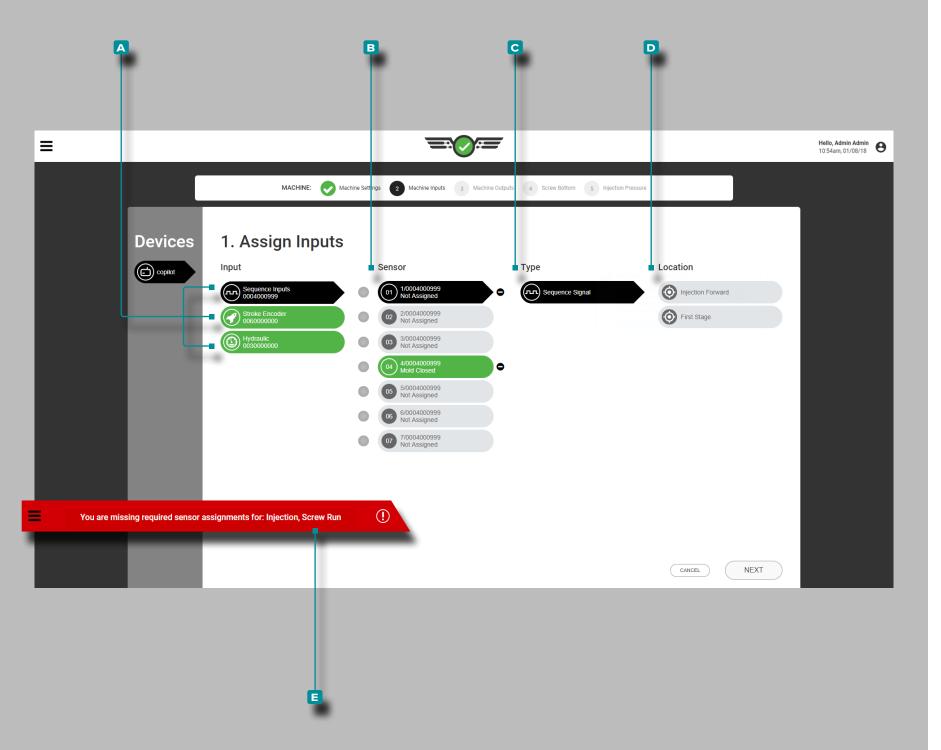
✓ MISE EN GARDE Un maximum de trois (3) champs personnalisés peuvent être affichés sur le tableau de bord du système CoPilot.

Modification des Champs Personnalisés

Les champs personnalisés peuvent être edited/updated sans arrêter le travail en cours d'exécution, si activé sur le logiciel The Hub. Les changements sont notés sur le graphique récapitulatif et les widgets de notes.

Appuyez sur l'icône d'édition, puis appuyez sur un champ pour saisir n'importe quel edits/updates. Appuyez sur le bouton Annuler pour annuler toute modification ou appuyez sur le bouton Enregistrer pour enregistrer les modifications.

Paramètres de la Machine

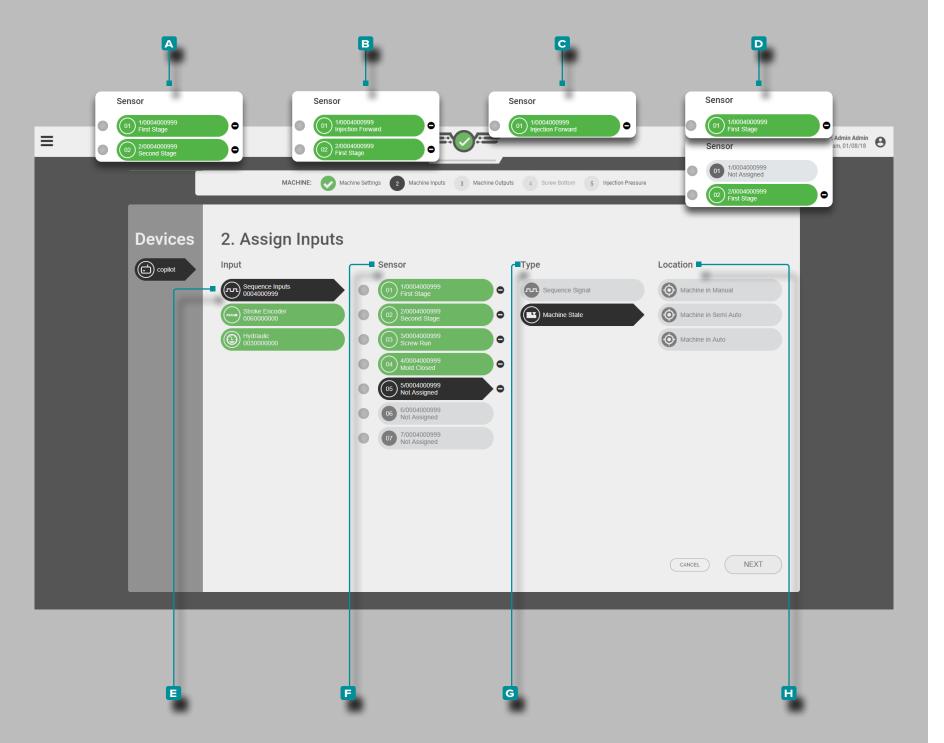

Complétez les paramètres de la machine chaque fois qu'une nouvelle configuration est créée. Les paramètres de la machine incluent le nom, le diamètre de la vis et le type de machine.

Nom, Diamètre de Vis, Type de Machine

Le diamètre de la vis est requis et peut être une valeur de 0,1+ en utilisant une seule décimale (dixièmes «0,0»). Appuyez sur le champ pour saisir | le B diamètre de la vis, puis appuyez sur pour saisir | l'unité de mesure du diamètre de la vis.

Appuyez pour sélectionner le type de machine (obligatoire). Appuyez sur le champ pour saisir | le purapport d'intensification des machines hydrauliques.

- (i) **REMARQUE** Si le rapport d'intensification de la machine est de 10 : 1, entrez «10» ; Le Ri d'une machine ne peut pas être modifié pendant l'exécution d'un travail.
- **DEFINITION** Le rapport d'intensification (Ri) est la comparaison de la pression d'entrée hydraulique sur le cylindre d'injection par rapport à la pression de sortie du plastique à l'avant de la vis. (Ri) Surface du vérin d'injection ÷ Surface de vis
- ✓ MISE EN GARDE Les machines électriques ou hybrides ont un réglage de contrôleur pour Pack Velocity qui doit être réglé correctement pour que le CoPilot calcule correctement et de manière cohérente la pression de maintien et que la cavité soit bien compactée avant la fin du temps de maintien.


Affecter des Entrées

Attribuez des entrées à chaque fois qu'une nouvelle configuration de machine est créée. Les entrées incluent les entrées de séquence, les positions de course et de vitesse d'injection, la pression d'injection, le signal de récupération de vis (si aucun signal ne peut être obtenu pour le module de séquence de la machine), le signal de fermeture du moule (si aucun signal ne peut être obtenu pour le module de séquence de la machine), et, facultativement, le débit et la température du liquide de refroidissement, ainsi que le débit et la température de l'eau.

(i) REMARQUE Si les entrées de séquence ne sont pas disponibles, le système CoPilot peut être utilisé avec un signal de moule fermé ou de moule serré ET un capteur de course/vitesse avec une fonctionnalité réduite de certaines fonctionnalités; cette opération est appelée « CoPilot Aller ». Reportez-vous à «CoPilot Aller» on page 12 pour obtenir des informations sur la configuration et le traitement de CoPilot Go.

Chaque A entrée connectée est affichée sur la gauche. Appuyez sur une A entrée pour attribuer un B capteur, un c type (le type d'entrée) et un D emplacement (l'emplacement physique ou la fonction de l'entrée) à l'entrée.

Chaque entrée connectée doit être affectée. Si une affectation d'entrée n'est pas terminée, une notification d'erreur indiquera que l'entrée n'a pas été configurée et doit être affectée avant de poursuivre la configuration de la machine.

Attribution des Entrées (suite)

Entrées de Séquences

Des entrées de séquence de machine pour l'injection avant, la course de la vis et la fermeture du moule sont nécessaires. L'injection avant peut être dérivée des combinaisons suivantes :

A (i) Voie de capteur 1: Dynamiqueet voie de capteur 2: deuxième étape ou

B (i) Canal du capteur 1: Injection avant et Canal du capteur 2: Première étape *ou*

C (i) Canal du capteur 1: Injection avant ou

D (i) Canal de capteur 1: première étape *ou* canal de capteur 2: première étape

(i) **REMARQUE** A recommandé, suivi de B, d'autres étant acceptables mais pas optimaux

(i) **REMARQUE** Une entrée de séquence de 1 ère et 2 ème étape est nécessaire pour le cycle fois qui se traduisent par un remplissage rapide fois /fill fois moins de 0,1 secondes, OU les utilisateurs devront utiliser le Set Fill le volume à la fonction Curseur pour calculer le remplissage temps. Reportez-vous à «Paramètres Avancés: Activation du Temps de Remplissage Rapide» on page 173, et à «Régler le volume de remplissage au curseur» on page 72.

Appuyez sur E l'entrée de séquence, puis sélectionnez le canal du Capteur pour attribuer le Cotype et le ou les Hemplacements pour l'entrée de séquence d'injection avant.

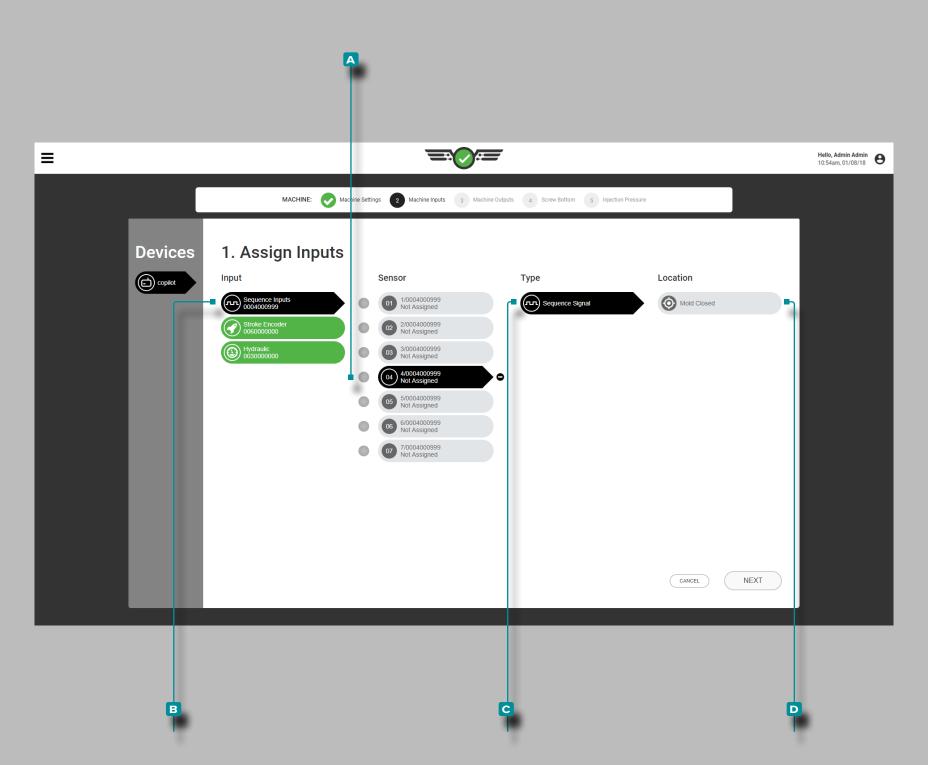
Si vous exécutez un process DECOUPLÉ II® ou DECOUPLÉ III®, le signal de séquence de remplissage peut être configuré à l'aide de la fonction «Set Fill at Cursor» sur le Cycle Graph (voir «Régler le volume de remplissage au curseur» on page 72).

■ **DEFINITION** Le module d'entrée de séquence ID7-M-SEQ est un module monté sur rail DIN qui est câblé directement à la presse à injecter afin de collecter des signaux de synchronisation 24 V CC à utiliser avec le logiciel CoPilot.

= Hello, Admin Admin 10:54am, 01/08/18 MACHINE: Machine Settings 2 Machine Inputs 3 Machine Outputs 4 Screw Bottom 5 Injection Pressure **Devices** 1. Assign Inputs copilot Sensor Туре Location Sequence Signal Screw Run 01 02 2/0004000999 Not Assigned CANCEL NEXT

Configuration(suite)

Attribution des Entrées (suite)


La course de vis peut être dérivée du

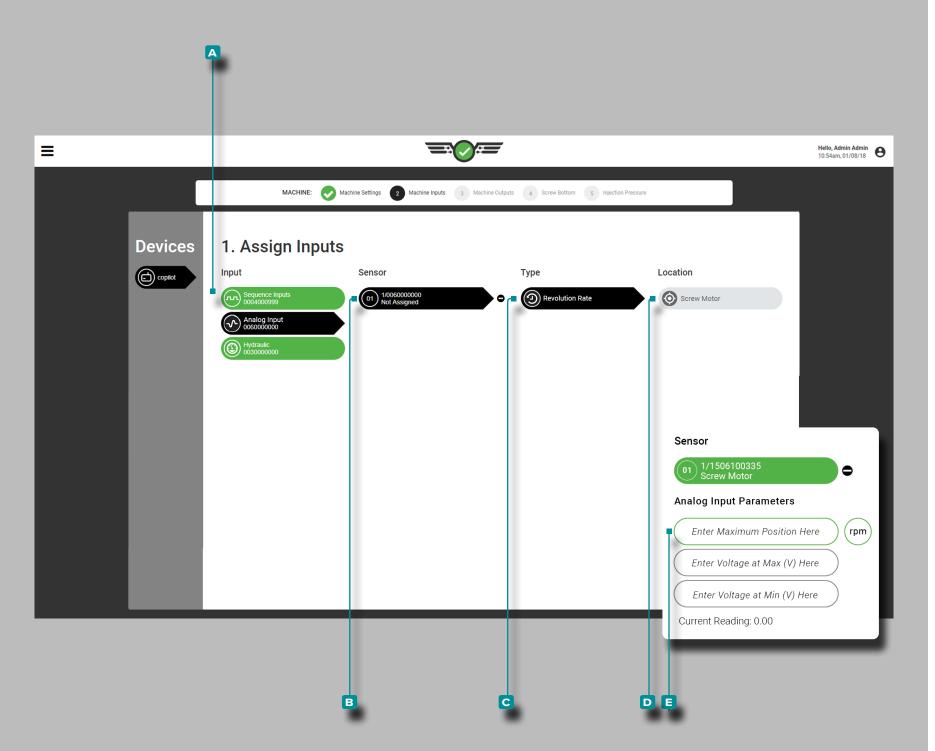
A (i)canal 3 du capteur du module de séquence: vis, OU

Entrée analogique: RPM à vis analogique.

Si un signal de course de vis est acquis à partir du module de séquence, appuyez a sur B l'entrée de séquence, puis sur le Canal 3 du capteur pour attribuer le C type et D l'emplacement de l'entrée de séquence de course de vis.

(i) **REMARQUE** Si le signal de fonctionnement de la vis est acquis par une entrée analogique à partir d'un régime de vis analogique, il sera affecté ultérieurement («Attribuer le régime de la vis analogique au signal de séquence de fonctionnement de la vis» on page 9).

Attribution des Entrées (suite)


Le moule fermé peut être dérivé du

A (i) canal 4 du capteur du module de séquence: moule fermé, OU interrupteur de proximité d'entrée, OU interrupteur de fin de course d'entrée.

Si un signal de fermeture de moule est acquis à partir du module de séquence,

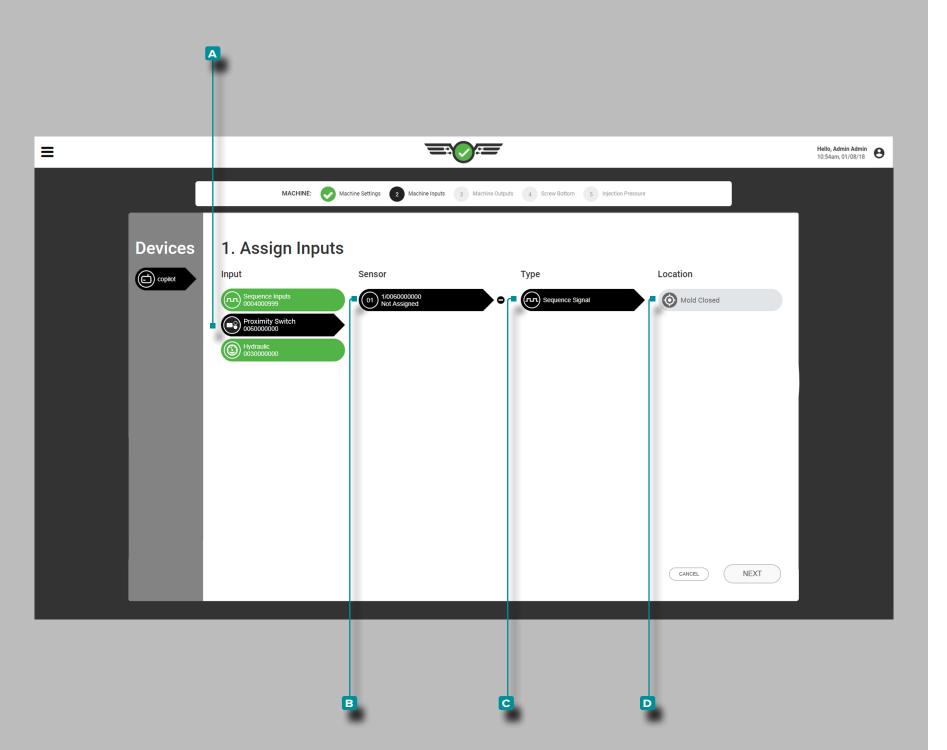
appuyez sur B l'entrée de séquence, puis sur le A canal de capteur 4 pour attribuer le ctype et D l'emplacement de l'entrée de séquence de fermeture de moule.

(i) **REMARQUE** Si le signal de fermeture du moule est acquis par une entrée d'un capteur de proximité ou de fin de course, il sera attribué plus tard («Attribuer l'entrée du capteur de proximité au signal de séquence de fermeture du moule» on page 10).

Attribution des Entrées (suite)

Attribuer le régime de la vis analogique au signal de séquence de fonctionnement de la vis

Appuyez sur A l'entrée analogique, puis sur le B canal du capteur 1 pour attribuer le C type et D l'emplacement de la vis l'entrée analogique de la séquence de rotation de la vis d'entrée.

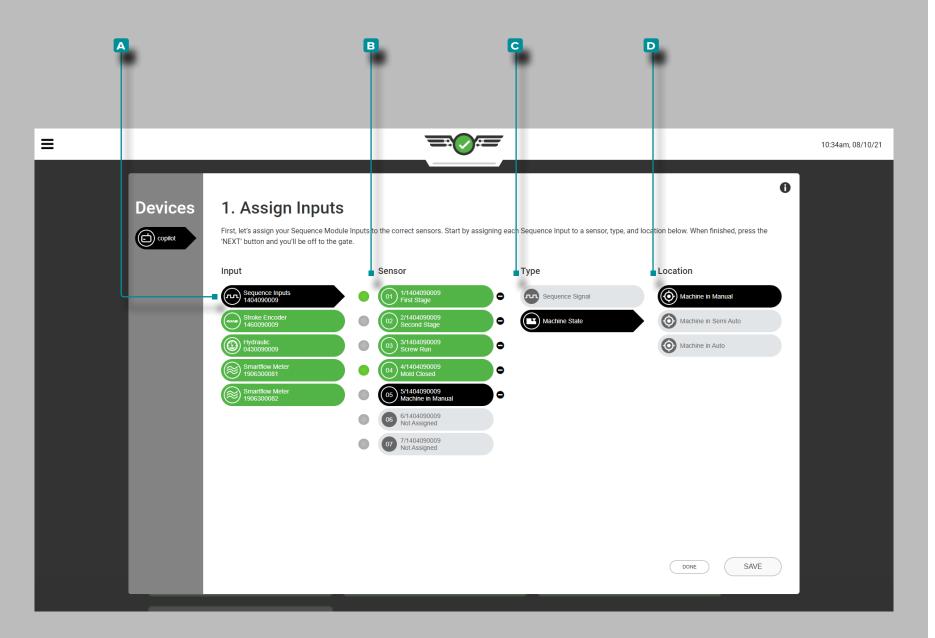

DEFINITION RPM DE LA VIS D'ENTRÉE ANALOGIQUE Le régime de la vis peut être dérivé par l'entrée analogique d'un signal électrique (machines électriques) si aucun signal de fonctionnement de la vis n'est disponible.

Appuyez ♣ sur les ■ champs pour entrer ∦ l'entrée analogique pour le régime de la vis maximum et la □ tension aux valeurs minimum et maximum.

DEFINITION ANALOG INPUT VOLTAGES (MIN/MAX) Le signal électrique pour la vitesse de rotation vis est généralement 0–10 V, avec une tension basse (pas nécessairement zéro) représentant la vis à l'arrêt et une haute tension (pas nécessairement 10V) représentant la vis en mouvement. Mesurez les tensions réelles pour la marche / arrêt de la vis.

Le régime maximal de la vis et la tension aux valeurs minimale et maximale sont nécessaires et peuvent être une valeur de 0 à 15V, avec deux décimales (centièmes «0,00»).

(i) **REMARQUE** La mise à l'échelle de l'entrée analogique : elle ne peut pas être configurée ou modifiée lorsqu'une tâche est en cours d'exécution / la machine est en cours de cycle.


Attribution des Entrées (suite)

Attribuer l'entrée du capteur de proximité au signal de séquence de fermeture du moule

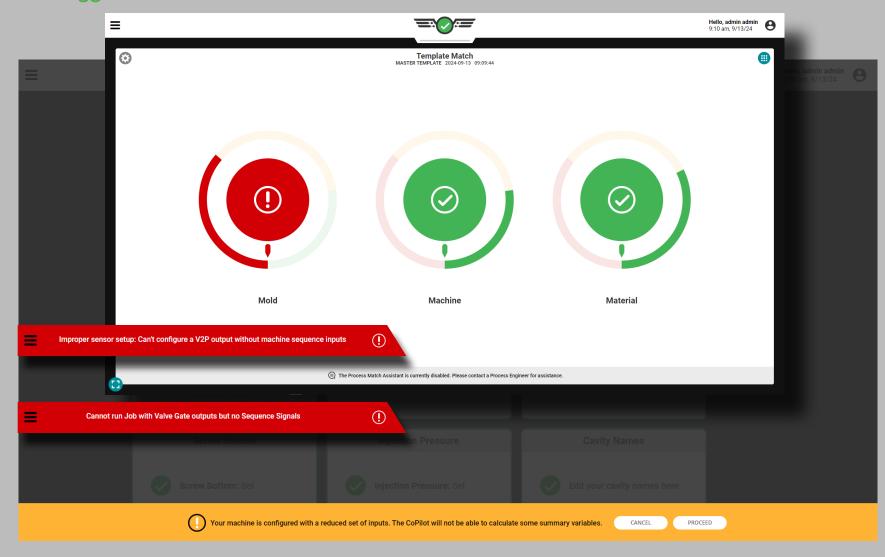
Appuyez sur A l'entrée, puis sur le B canal du capteur 1 pour attribuer le C type et D l'emplacement du moule d'entrée de séguence de capteur de proximité fermé.

OU

Appuyez sur A l'entrée, puis sur le B canal du capteur 1 pour attribuer le C type et D l'emplacement pour le moule d'entrée de séquence du capteur moule fermé.

Attribution des Entrées (suite)

Entrées de Séquence Facultatives—État de la Machine


Les entrées de séquence de machine pour les états de la machine en mode manuel, machine en semi-automatique et machine en automatique sont facultatives. Ces entrées de séquence fournissent l'état actuel de la machine au système CoPilot.

Appuyez sur A l'entrée, puis sur le B canal du capteur 1 pour attribuer le C type et D l'emplacement de l'entrée de séquence d'état de la machine.

La machine dans l'état de la machine d'entrée de séquence manuelle peut être utilisée en conjonction avec la commande d'obturateur de vannes comme moyen d'ouvrir toutes les vannes pour purger à travers le moule ; pour plus d'informations sur le contrôle d'obturateur de seuil, reportez-vous à la section «Réglages Généraux» on page 45 ou «Réglages Généraux du Contrôle d'Obturateur de Seuil» on page 135 obturateur à clapet » à la page pour plus d'informations sur la vanne gate/machine dans les options de contrôle manuel, «Configuration du Moule» on page 28 pour l'affectation et la configuration de la cavité de l'obturateur de seuil, et «Contrôle d'Obturateur de Seuil» on page 126 pour l'affectation et la surveillance d'ouverture et de fermeture du contrôle d'obturateur de seuil.

(i) **REMARQUE** obturateur Control est un outil facultatif et n'est disponible que pour les utilisateurs autorisés.

Attribution des Entrées (suite)

CoPilot Aller

CoPilot Aller permet la configuration d'une machine sans signaux de séquence d'injection directe (IF), de première étape (FS/1er), de deuxième étape (SS/2e) ou de course de vis (SR) tant qu'un signal de moule fermé ou de moule serré (MC) et un capteur de course/vitesse sont attribués. La pression d'injection (INJ) peut également être configurée lors de l'utilisation de CoPilot Aller uniquement, mais elle n'a pas non plus besoin d'être attribuée.

Pour utiliser CoPilot Aller, attribuez MC à l'aide d'un détecteur de proximité lors de l'attribution des entrées (reportez-vous à «Assign Proximity Switch Input to Mold Closed Sequence Signal» on page 10) *et* au capteur de course/vitesse Lynx LE-R-50-REVB. En option, la pression d'injection peut également être attribuée (voir «Pression d'Injection (Machines Electriques)» on page 16 ou «Pression d'Injection (Machines Hydrauliques)» on page 17).

Lors de l'utilisation de CoPilot Aller, les variables récapitulatives suivantes utilisées pour détecter et trier les prises de vue courtes et le flash sont disponibles :

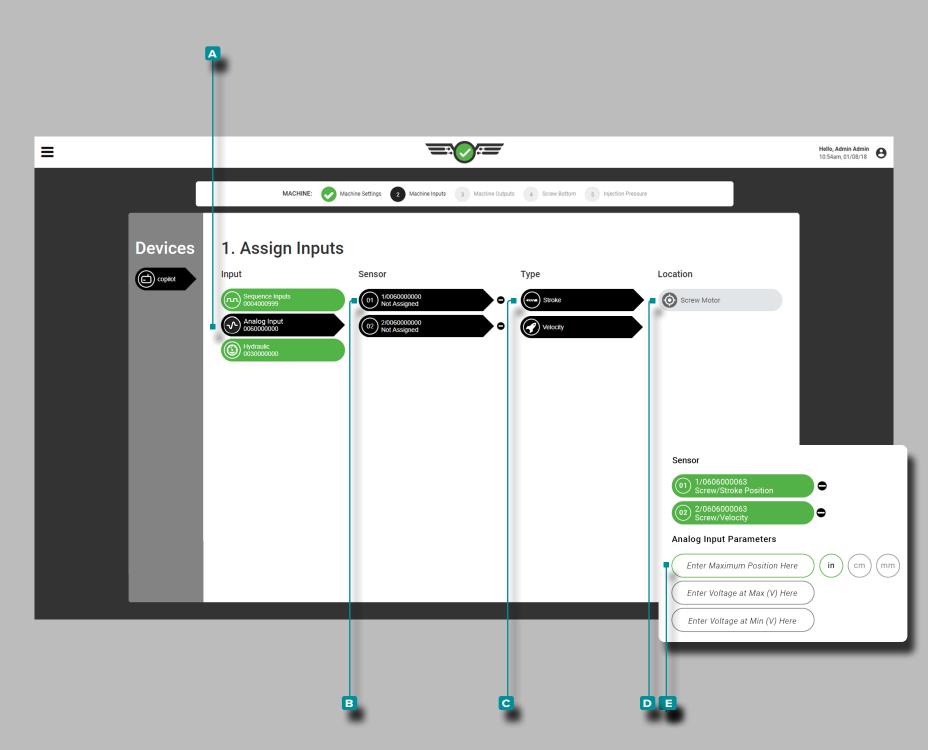
- Pression maximale de la cavité (y compris la plage moyenne et le pic d'équilibre)
- Cycle Intégral de Pression de Cavité
- Temps de Cycle
- Temps de Démoulage
- Matelas
- Pression de Remplissage (uniquement lorsque INJ est configuré)
- Intégrale de Crête (intégrale de remplissage et d'emballage)
- Taux d'Emballage et Taux de Refroidissement
- Températures Maximales, Minimales et Moyennes
- Hausse de Température
- Déflexion du Moule de Pic
- Débit Moyen
- (i) **REMARQUE** Template Match fonctionnera sans signaux de séquence de machine, même avec des variables de résumé manquantes.

Si aucun signal de séquence ou INJ n'est attribué, certaines fonctionnalités et données ne seront pas disponibles :

- Le tri ne fonctionnera qu'à la fin du calage du moule
- · La commande de la vanne ne fonctionne pas.
- Les sorties V→P ne peuvent pas être configurées et ne fonctionneront pas.
- Les processus avec des alarmes définies sur des variables non disponibles ne fonctionneront pas ; un nouveau processus doit être créé.
- MAX (assistance au processus) ne fonctionnera pas.

Entrées de Séquence de Test

Vérifiez que les entrées du module de séquence


✓ sont correctement affectées.

Observez que le voyant correspondant sur l'ID7-M-SEQ physique s'allume lorsque la séquence correcte est effectuée, ainsi que le voyant correspondant à côté de l'entrée sur l'écran ; Vérifiez que la séquence se produit dans l'ordre de fonctionnement normal.

✓ MISE EN GARDE Les signaux d'entrée de séquence doivent être correctement affectés. Le non-respect de cette consigne entraînera l'échec du logiciel à fonctionner comme prévu.

Avec la machine en mode manuel, procédez comme suit :

- 1. Lancez la machine en manuel pour injecter ; le voyant d'injection avant correspondant doit s'allumer.
- **2.** Tournez la vis ; le voyant de mouvement de vis correspondant doit s'allumer.
- **3.** Fermez le moule ; la lumière correspondante du moule fermé doit s'allumer.

Attribution des Entrées (suite)

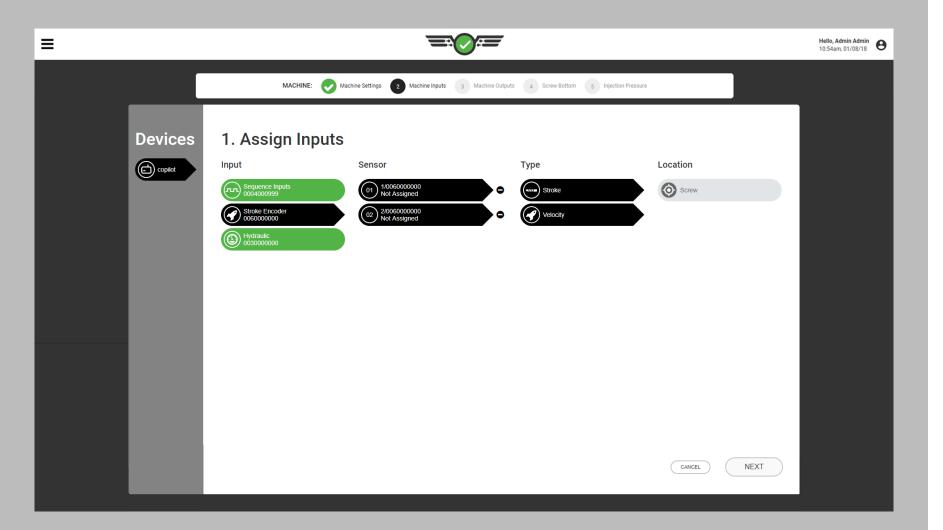
Position / Vitesse de Course (Machines Electriques)

Une entrée analogique pour la position / vitesse de course maximale est requise pour les machines électriques et peut être une valeur de 0+ sans contrainte pour les décimales. L'unité de mesure de position est requise.

Appuyez sur A l'entrée analogique, puis sur le B canal du capteur pour attribuer le C type et D l'emplacement à la fois à la position de course et à la vitesse.

Appuyez ♣ sur les ☐ champs pour saisir ☐ les tensions d'entrée analogiques aux valeurs minimum et maximum pour la position de course de la machine électrique.

(i) **REMARQUE** La mise à l'échelle de l'entrée analogique: position de course / vitesse ne peut pas être modifiée pendant l'exécution d'un travail.

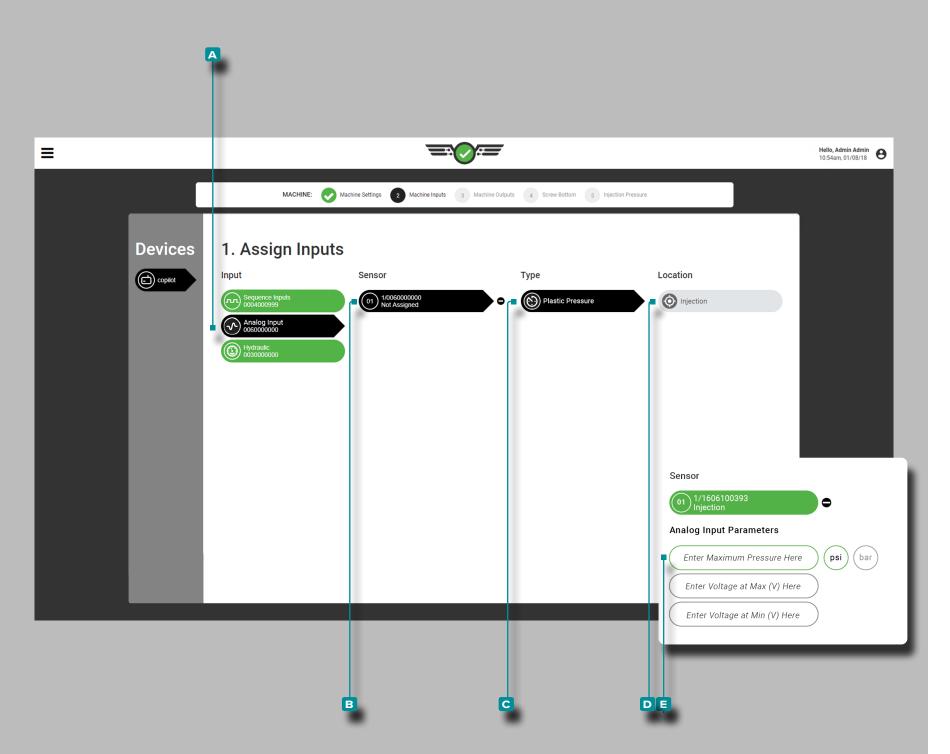

La tension de position / vitesse de course aux valeurs minimale et maximale est requise et peut être une valeur de 0 à 15V, avec deux décimales (centièmes «0,00»).

☐ **DEFINITION** POSITION / VITESSE DE COURSE D'ENTREE

ANALOGIQUE La position et la vitesse de course sont dérivées de l'entrée analogique des signaux électriques (machines électriques).

☐ DEFINITION TENSIONS D'ENTRÉE ANALOGIQUE (MIN

/ MAX) Le signal électrique pour la position de course est généralement de 0 à 10 V, avec une basse tension (pas toujours zéro) représentant la position arrière de la vis et une haute tension (pas toujours 10 V) représentant la course maximale. Mesurez les tensions réelles de la vis reculée et avancée au maximum.



Attribution des Entrées (suite)

Position / Vitesse de Course (Machines Hydrauliques)

Une entrée analogique pour la <u>position</u> / la vitesse de course est requise pour les machines hydrauliques et est automatiquement attribuée si l'équipement approprié (Lynx ™ Stroke / Velocity Encoder LE - R - 50) est installé.

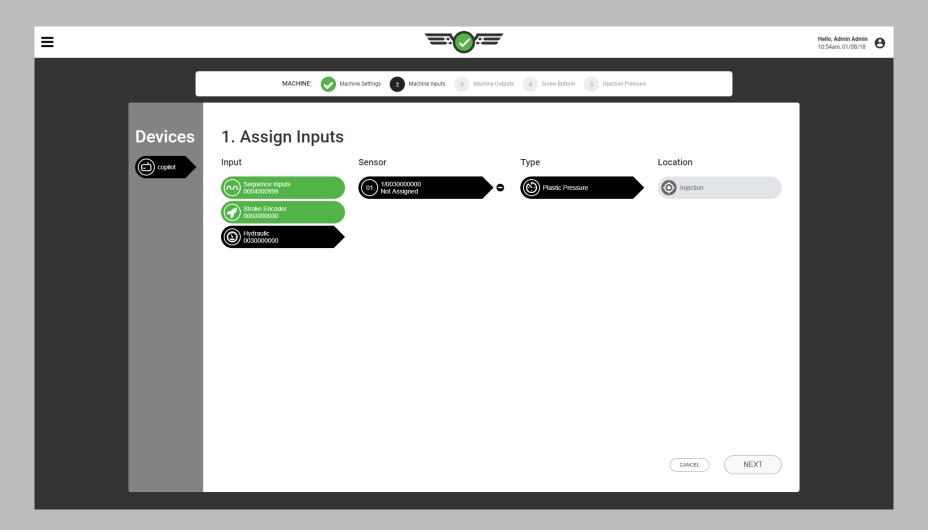
DEFINITION POSITION / VITESSE DE COURSE D'ENTREE ANALOGIQUE La position / vitesse de course est dérivée par l'entrée analogique du codeur de course LE-R-50 (machines hydrauliques).

Attribution des Entrées (suite)

Pression d'Injection (Machines Electriques)

Une entrée analogique pour la ① pression d'injection maximale est requise pour les machines électriques et peut être une valeur de 0+ sans contrainte pour les décimales. L'unité de mesure de pression est requise.

Appuyez sur A l'entrée analogique, puis sur le B canal du capteur pour attribuer le C type et D l'emplacement de la pression d'injection.

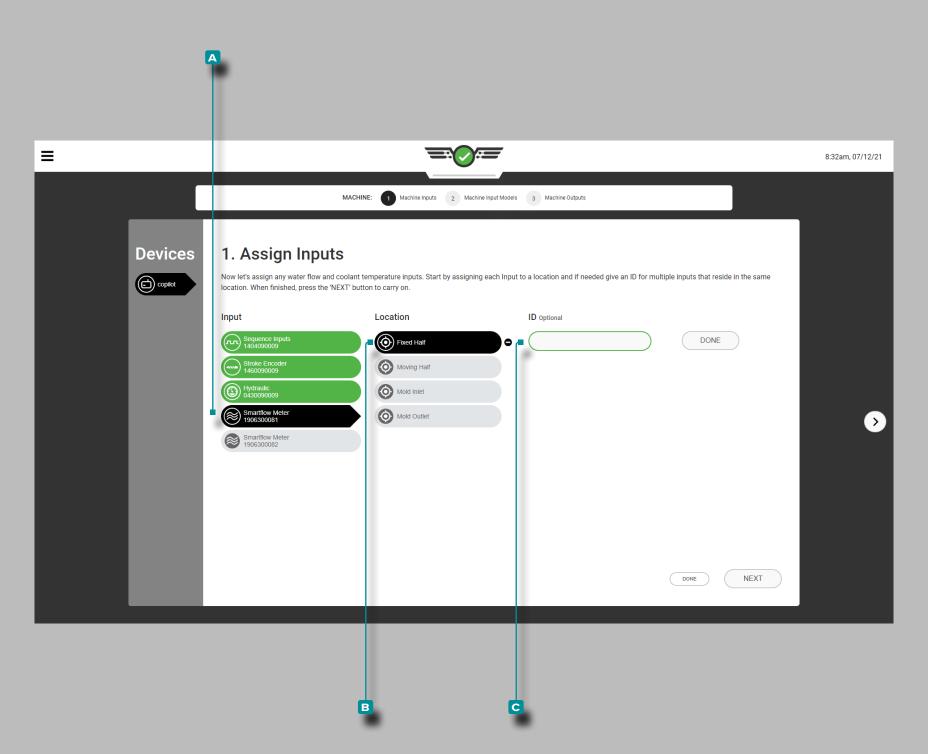

Appuyez sur les champs et entrez les putensions d'entrée analogiques aux valeurs minimum et maximum pour les machines électriques. Les tensions peuvent être une valeur de 0 à 15, avec deux décimales (centièmes «0,00»).

DEFINITION PRESSION D'INJECTION MAXIMALE D'ENTRÉE ANALOGIQUE La pression d'injection maximale est dérivée par le module d'entrée analogique d'un signal électrique (machines électriques).

■ **DEFINITION** TENSIONS D'ENTRÉE ANALOGIQUE (MIN / MAX) Le signal électrique pour la pression est généralement de 0 à 10 V, avec une basse tension (pas toujours zéro) représentant une pression nulle et une haute tension (pas toujours 10 V) représentant la pression maximale. Mesurez les tensions réelles à zéro et pression maximale

Pour déterminer les tensions de sortie de la machine électrique:

- 1. Avec le moteur éteint ou la machine en veille, enregistrez la tension indiquée avec deux décimales.
- 2. Réglez une pression de maintien et avec la machine en mode manuel purgez jusqu'à ce que la vis soit reculée. Enregistrez la pression réelle de la machine et enregistrez la tension indiquée.
- **3.** Entrez la pression maximale (pression réelle de la machine), la tension au maximum (tension enregistrée 2) et la tension au minimum (tension enregistrée 1).
- (i) **REMARQUE** La mise à l'échelle de l'entrée analogique : pression d'injection ne peut pas être modifiée lorsqu'une tâche est en cours d'exécution.


Attribution des Entrées (suite)

Pression d'Injection (Machines Hydrauliques)

Une entrée pour la ☐pression d'injection est requise sur les machines hydrauliques et est automatiquement attribuée si l'équipement approprié (capteur hydraulique Lynx ™ 3 000 psi LS - H - 1 / 4NPT - 3K) est installé. Aucun étalonnage n'est nécessaire car le capteur est un capteur pré-étalonné RJG, Inc.

DEFINITION PRESSION D'INJECTION MAXIMALE D'EN-

TRÉE La pression d'injection maximale est déterminée par le capteur hydraulique LS-H-1 / 4NPT-3K (machines hydrauliques).

Attribution des Entrées (suite)

Débit et température du liquide de refroidissement (en option)

L'entrée pour le débit et la température du liquide de refroidissement est facultative. Si un débitmètre Smartflow® TracerVM™ de Burger and Brown Engineering, Inc. est connecté, les affectations de capteur d'entrée et d'emplacement doivent être effectuées.

Appuyez sur l'entrée A, puis sur l'emplacement du capteur pour chaque débitmètre. L'emplacement du débitmètre peut être affecté à la moitié fixe, à la moitié mobile, à l'entrée du moule ou à la sortie du moule.

Appuyez sur ♣ le champ C pour saisir 月 l'ID si plusieurs capteurs seront situés au même endroit.

Aucun étalonnage n'est nécessaire car le capteur est un capteur pré-étalonné RJG, Inc. Les données de débit et de température du liquide de refroidissement provenant des débitmètres configurés seront disponibles pour afficher et activer les alarmes dans le widget Alarmes, le graphique de cycle et le graphique récapitulatif.

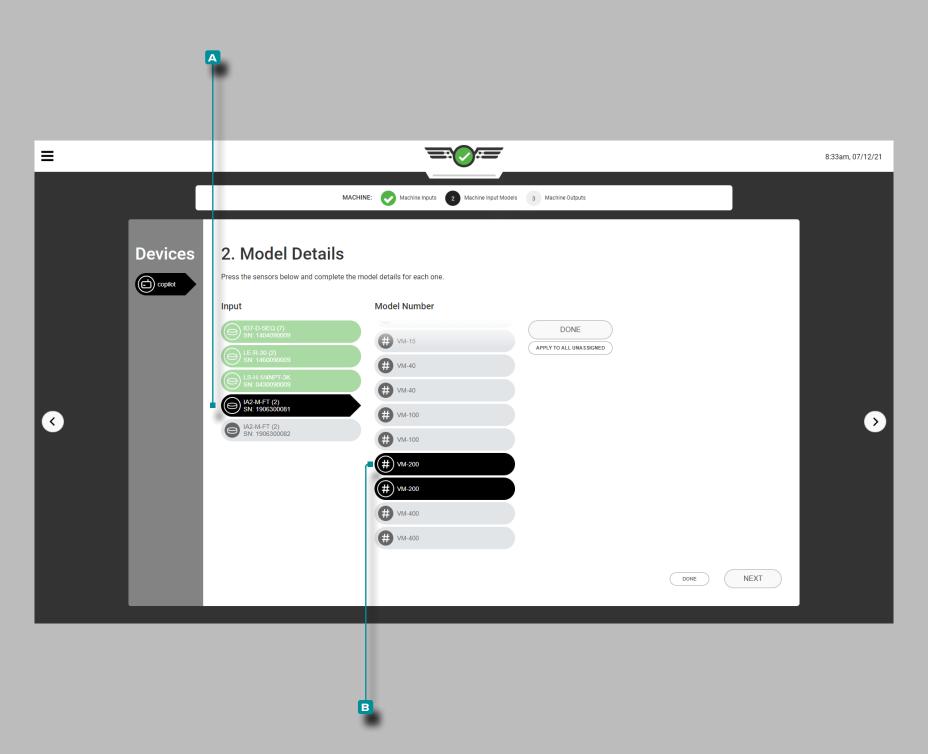
Attribution des Entrées (suite)

Débit et Température de l'Eau (facultatif)

La saisie du débit d'eau et de la température du liquide de refroidissement est facultative. Si un dispositif de débit ou de température d'eau est connecté à un module d'entrée analogique IA1-MV, les affectations du capteur d'entrée et de l'emplacement doivent être complétées. Affichez ou définissez des alarmes sur les données de débit d'eau et de température dans le widget Alarmes, le widget Valeurs des cycles précédents, le graphique de cycle et le graphique récapitulatif.

Appuyez sur A l'entrée, B l'emplacement du capteur, C le type et D l'emplacementpour chaque dispositif de débit d'eau ou de température. Le type C peut être attribué au débit ou à la température. L'emplacement D peut être attribué à la moitié fixe, à la moitié mobile, à l'entrée du moule ou à la sortie du moule.

Appuyez sur le le champpour saisir | l'ID si plusieurs affectations doivent être effectuées au même endroit. Appuyez sur le bouton le TERMINÉ pour terminer les devoirs.

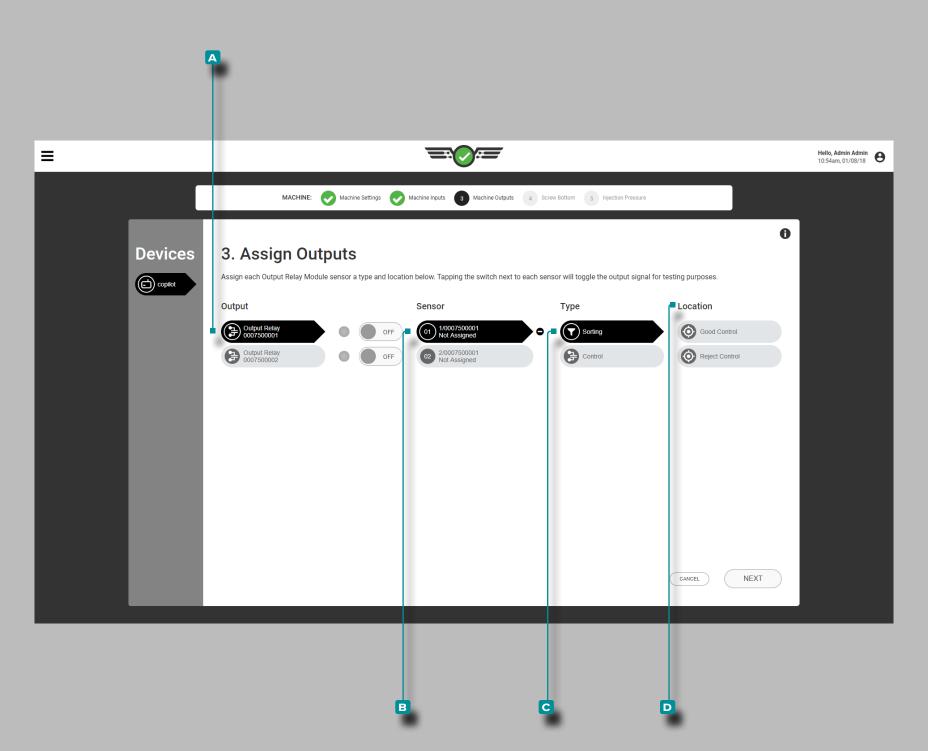

Appuyez sur les champs pour saisir | les valeurs minimales et maximales du débit ou de la température ; appuyez pour sélectionner l'unité de mesure associée : degrés Fahrenheit ou Celsius, OU gallons par minute, litres par minute ou pieds cubes par minute.

(i) **REMARQUE** La mise à l'échelle de l'entrée analogique ne peut pas être modifiée pendant l'exécution d'une tâche.

Appuyez sur ♣ les ℍ champspour saisir ℍ les tensions d'entrée analogiques aux valeurs minimales et maximales du débit ou de la température. Les tensions peuvent être une valeur de 0 à 15, avec deux décimales (centièmes «0,00»).

Appuyez sur le bouton le TERMINÉ pour terminer l'affectation de l'entrée de débit d'eau ou de température, ou appuyez sur le bouton le NEXT pour terminer les affectations d'entrée de la machine et continuer la configuration de la sortie de la machine.

■ DEFINITION TENSIONS D'ENTRÉE ANALOGIQUES (MIN/MAX) Le signal électrique est généralement de 0 à 10 V, avec une basse tension (pas toujours nulle) représentant zéro et une haute tension (pas toujours 10 V) représentant le maximum. Mesurez les tensions réelles à zéro et au maximum.

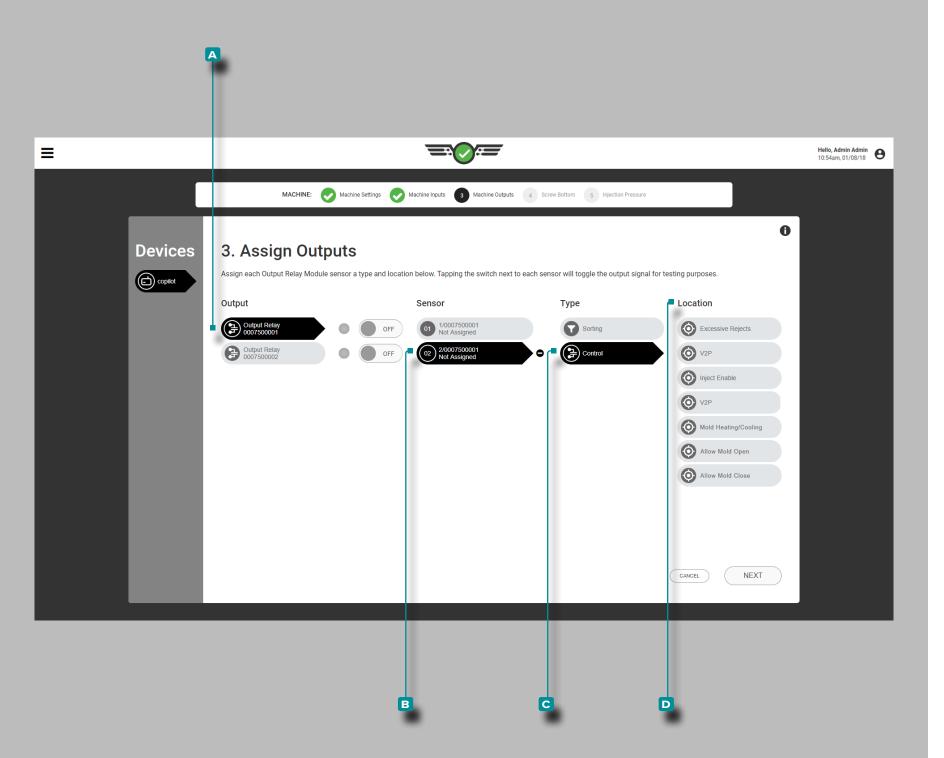


Attribution des Détails du Modèle

La plupart des détails du modèle de capteur d'interface machine seront automatiquement attribués par le système dans le logiciel; certains capteurs nécessiteront une sélection de modèle.

Configuration du Débitmètre Smartflow

Appuyez sur l'entrée A, puis appuyez sur le numéro de modèle pour chaque débitmètre ; un modèle est choisi pour les deux canaux 1: débit et canal de liquide de refroidissement 2: température du liquide de refroidissement.


Affectation des Sorties

Sortie de Tri

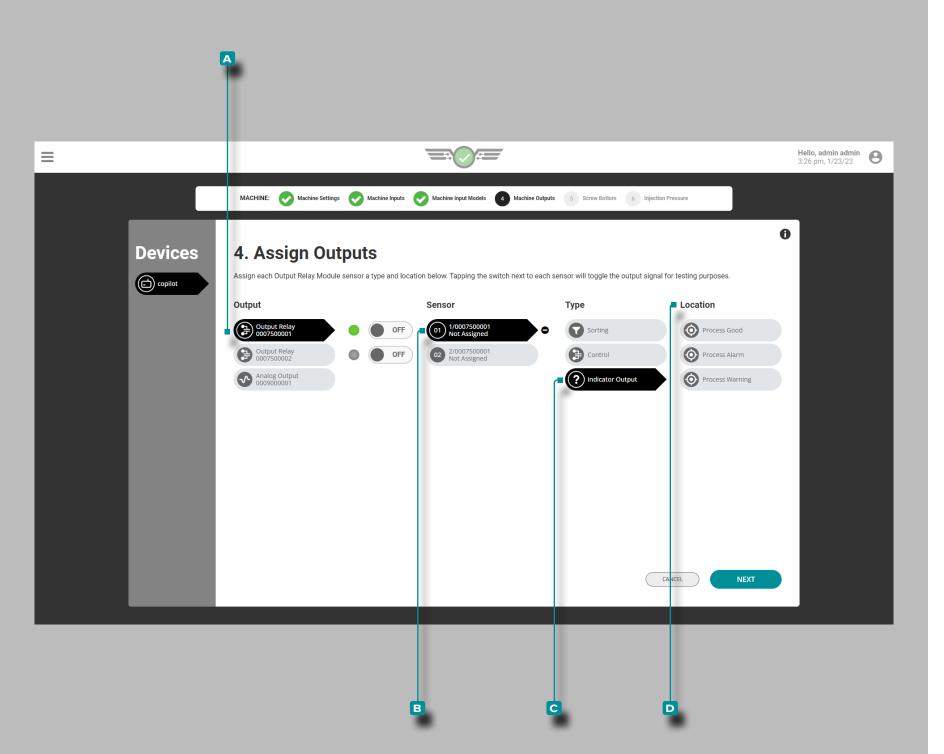
Le cas échéant, attribuez des sorties de tri chaque fois qu'une nouvelle configuration est créée. Affectez les sorties de tri aux voies du module de relais de sortie dont elles sont câblées physiquement.

Appuyez ♣ sur le ⚠ relais de sortie, puis sur le ☒ canal du capteur pour attribuer le ☒ type et ☒ l'emplacement du tri.

- **DEFINITION** SORTIES DE TRI BON CONTRÔLE Une sortie de fermeture de contact de relais qui est connectée à l'équipement de tri et peut être utilisée pour déplacer une bonne pièce vers un emplacement «Bon» lorsque «ON» (les contacts sont fermés) ou un emplacement «Failsafe» lorsque «OFF» (les contacts sont ouverts) à la fin d'un cycle. Le tri de la sortie analogique empêche les pièces défectueuses d'être classées comme «bonnes».
- **DEFINITION** SORTIES DE TRI CONTRÔLE DE REJET Une sortie fermée de contact de relais qui est connectée à l'équipement de tri et peut être utilisée pour déplacer une pièce défectueuse vers un «mauvais» emplacement lorsque «ON» (les contacts sont fermés) et un «bon» emplacement lorsque «OFF» (les contacts sont ouverts) à la fin d'un cycle.

Attribution des Entrées (suite)

Sorties de Contrôle


Le cas échéant, attribuez des sorties de contrôle à chaque fois qu'une nouvelle configuration est créée. Affectez les sorties de contrôle aux voies du module de relais de sortie auxquelles elles sont physiquement câblées.

Appuyez sur le A relais de sortie, puis sur le B canal du capteur pour attribuer le C type et D l'emplacement du contrôle (reportez-vous au Guide d'installation et de configuration du matériel CoPilot pour plus d'informations sur le câblage du module de relais de sortie).

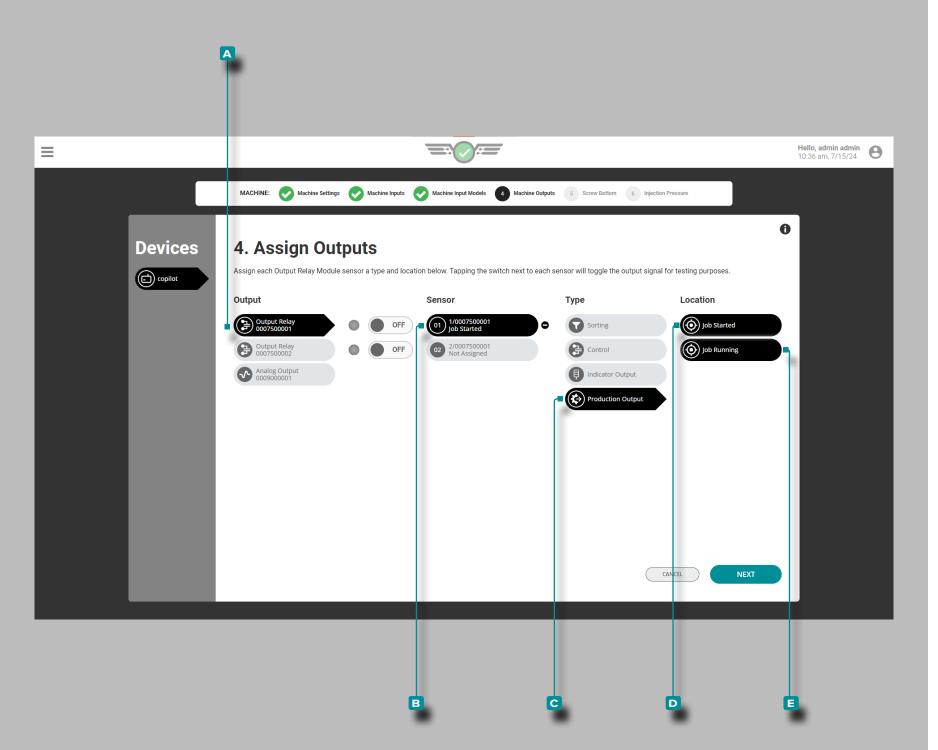
Les sorties de contrôle comprennent le contrôle des rejets excessifs, le contrôle de la vitesse en fonction de la pression (V2P ou V→P), le contrôle d'activation de l'injection et l'autorisation d'ouverture du moule, l'autorisation de fermeture du moule et le contrôle du chauffage et du refroidissement du moule (à utiliser avec la fonction Chauffage et refroidissement - reportez-vous à la page 133 pour la configuration et le fonctionnement du chauffage et du refroidissement).

- **DEFINITION** SORTIES DE CONTRÔLE REJETS EXCESSIFS Une sortie de relais qui détecte une instabilité / des rebuts sporadiques ou une succession de rebuts et peut être connectée à un équipement pour activer une alarme ou arrêter la machine de moulage pour éviter des rebuts excessifs.
- **DEFINITION** SORTIES DE PILOTAGE— V2P Une sortie qui fournit un pilotage de la commutation de la vitesse à la pression $(V \rightarrow P)$ en fonction de la pression empreinte ou du temps après le début du remplissage peut être une sortie relais ou une sortie analogique.
- **DEFINITION** AUTORISATION INJECTION Sortie relais qui permet à la machine de fonctionner jusqu'à ce que l'un des événements suivants se produise : un capteur de pilotage tombe en panne ou arrête la communication avec le système CoPilot ; tout module utilisé pour le contrôle ou le séquençage ne parvient pas à communiquer avec le système CoPilot ; le module de relais de sortie associé à la commande Inject Enable est déconnecté ; ou l'alimentation du système CoPilot est coupée.
- **DEFINITION** CONTRÔLE DU CHALEUR ET DU REFROIDISSE-MENT Un ensemble de sorties relais qui permettent au moule de

s'ouvrir, au moule de se fermer, au contrôleur de température du moule connecté de chauffer et au contrôleur de température du moule connecté de refroidir, afin de contrôleur le chauffage et le refroidissement d'un moule. Consultez «Heat and Cool» on page 133.

Attribution des Entrées (suite)

Sorties de l'Indicateur


Le cas échéant, affectez les sorties de l'indicateur chaque fois qu'une nouvelle configuration est créée. Affectez les sorties d'indicateur aux voies du module de relais de sortie auxquelles elles sont physiquement câblées.

Appuyez sur le A relais de sortie, puis sur le B canal du capteur pour attribuer le C type et D l'emplacement du sorties de l'indecateur (reportez-vous au Guide d'installation et de configuration du matériel CoPilot pour plus d'informations sur le câblage du module de relais de sortie).

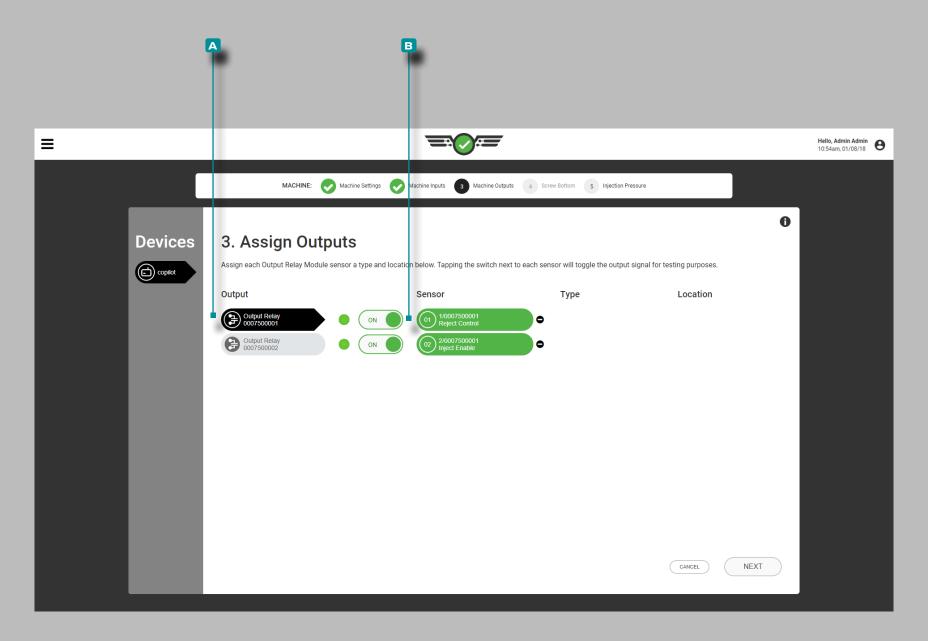
L'emplacement de sortie de l'indicateur comprend Process Good, Process Alarm et Process Warning ; ces sorties correspondent à tous les paramètres d'alarme et d'avertissement.

Le cas échéant, les ☐ sorties d'indicateur Process Good et Process Alarm sont attribuées automatiquement lorsqu'un arbre lumineux RJG Lynx™ LT3-L est connecté.

DEFINITION SORTIE D'INDICATEUR *Une sortie de relais qui permet à un indicateur connecté (tel qu'un arbre lumineux ou une cloche) d'indiquer si le processus se déroule dans les limites.*

Attribution des Entrées (suite)

Tâche de Sortie de Production Démarrée

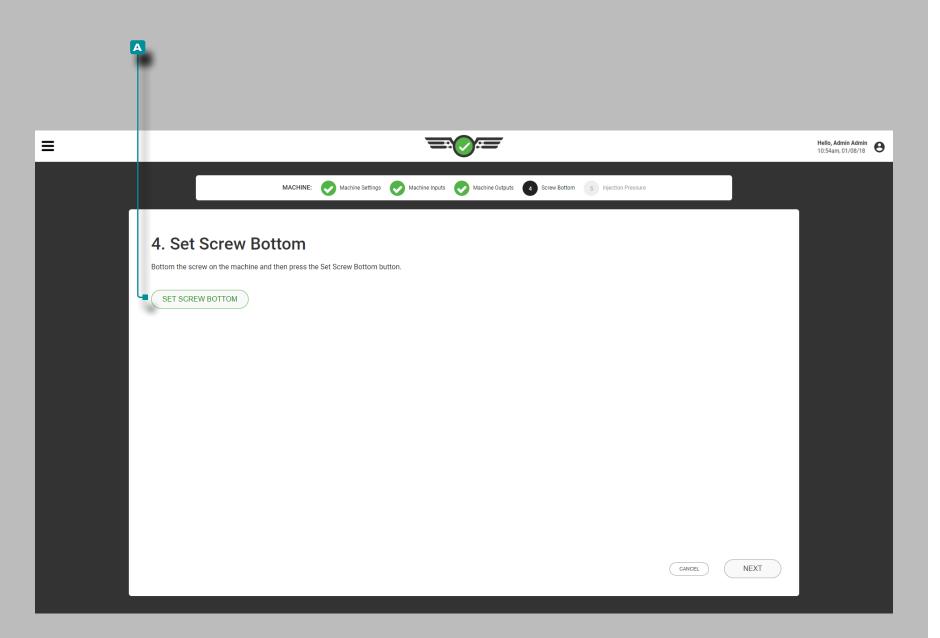

La tâche de sortie de production démarrée est attribuée à un module de sortie physique à double relais (OR2-M) connecté au système CoPilot et à la machine de moulage par injection (IMM). La sortie de production Tâche démarrée permet à la sortie relais de s'activer et au module IMM de faire un cycle lorsque le système CoPilot est sous tension et qu'une tâche est démarrée.

Appuyez sur le la relais de sortie, puis sur le canal du la capteur pour attribuer le type de sortie de le production et l'emplacement de démarrage de la la sortie de l'indicateur (reportez-vous au Guide d'installation et de configuration du matériel CoPilot pour plus d'informations sur le câblage du module de relais de sortie).

Travail de Sortie de Production en Cours d'Exécution

L'exécution du travail de sortie de production est attribuée à un module de sortie physique à double relais (OR2-M) connecté au système CoPilot et à la machine de moulage par injection (IMM). La sortie de production « Tâche en cours » permet à la sortie relais de s'activer et à l'IMM de faire un cycle lorsqu'une tâche est en cours d'exécution sur le système CoPilot et d'éteindre/arrêter l'IMM si la tâche entre dans un état d'arrêt.

Appuyez sur le la relais de sortie, puis sur le canal du la capteur pour attribuer le type de sortie de le production et l'emplacement d'exécution du la travail pour la sortie de l'indicateur (reportez-vous au Guide d'installation et de configuration du matériel CoPilot pour plus d'informations sur le câblage du module de relais de sortie).

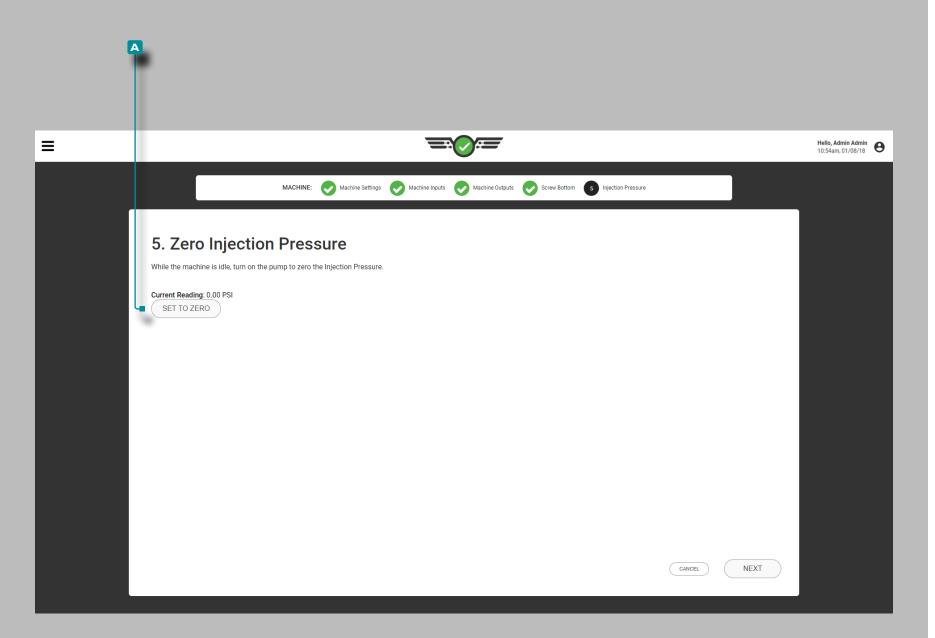

Attribution des Entrées (suite)

Tester le Tri et Contrôler les Sorties

Tester les sorties pour le tri et le contrôle du fonctionnement.

Appuyez & sur le 🛕 relais de sortie pour le sélectionner.

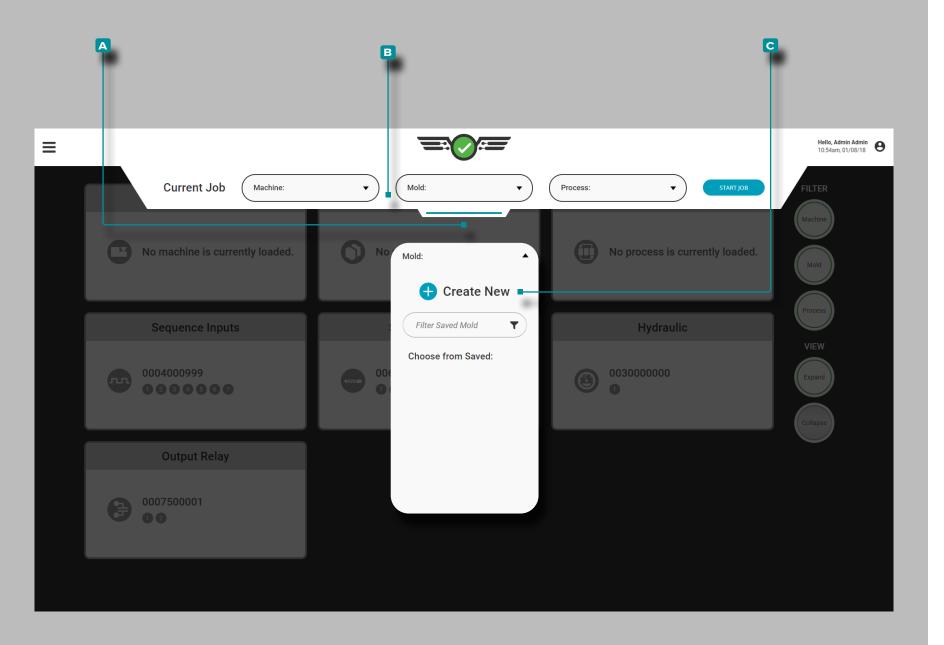
Appuyez sur le bouton B MARCHE / ARRÊT à côté du canal affecté au tri ou au contrôle pour vérifier que le dispositif de contrôle ou la machine connecté effectue l'action appropriée.


Base de la Vis

Le logiciel calcule la course et le volume injecté à partir de la position de la vis reculée réglée et de l'indicateur de course (LE-R-50 ou IA1-M-V). L'arrière de la vis est le point zéro de l'indicateur de course de la machine.

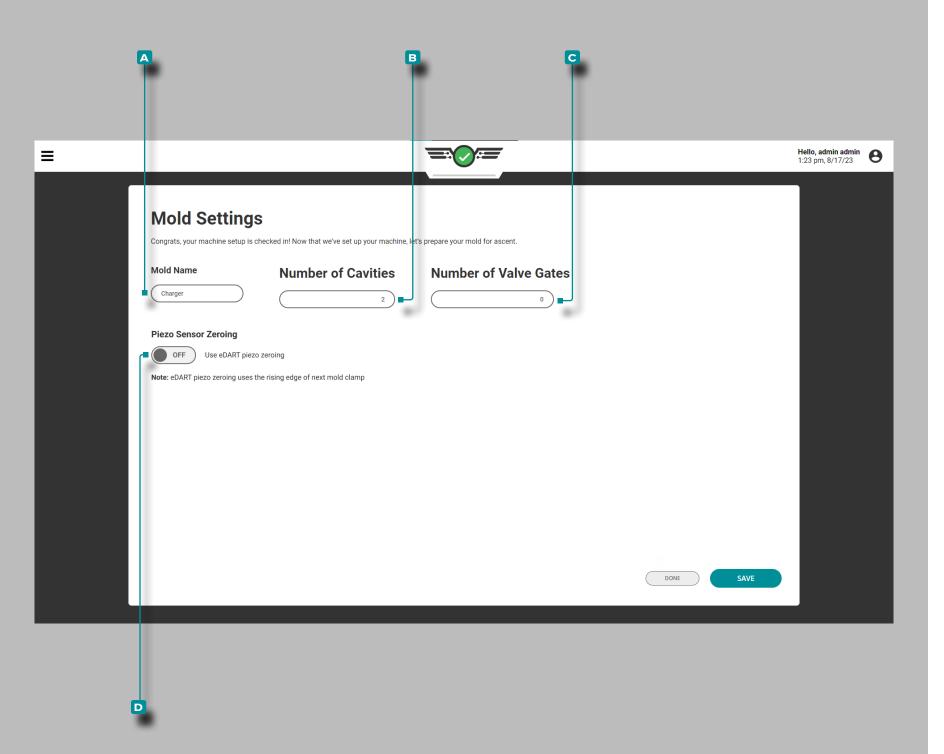
Réglez la position reculée de la vis chaque fois qu'une nouvelle configuration est créée. Reculez physiquement la vis sur la machine, puis appuyez pour sélectionner le bouton (a) de réglage de l'arrière de la vis.

Alternativement, le fond de la vis peut être réglé à partir du tableau de bord de configuration ; reportez-vous à «Vis de Réglage Inférieure du Tableau de Bord de Configuration» on page 50.


(i) **REMARQUE** Le fond de la vis doit être réglé chaque fois qu'une configuration est créée. Le CoPilot ne mémorise pas cette position et le matelas ne sera pas correctement calculé si le fond de la vis n'est pas réglé après chaque démarrage de la machine, changement de tâche ou mise hors tension du système CoPilot.

Pression d'Injection

Mettre à zéro la pression d'injection à chaque fois qu'une nouvelle configuration est créée (machines hydrauliques uniquement).


- 1. Placez la machine au ralenti.
- 2. Allumez la pompe hydraulique.
- 3. Appuyez 🌢 pour sélectionner le bouton 🛕 🚺 Mettre à zéro.
- (i) **REMARQUE** La pression d'injection hydraulique au ralenti est normalement supérieure à zéro en raison d'une pression résiduelle négligeable. Le logiciel CoPilot utilise la valeur résiduelle comme valeur zéro pour les calculs.

Configuration du Moule

Appuyez , maintenez et faites glisser le menu déroulant pour accéder à la configuration de l'appareil. Appuyez sur le menu déroulant Moule, puis appuyez sur pour sélectionner l'option Créer un nouveau moule.

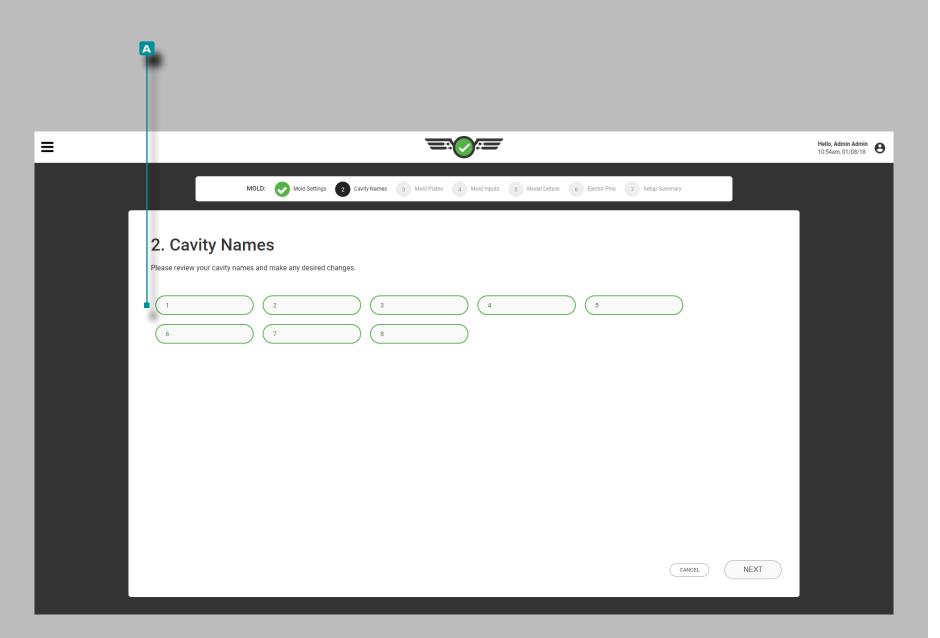
Terminez la configuration du moule chaque fois qu'une nouvelle configuration est créée. La configuration du moule comprend les paramètres de moule, les noms d'empreinte, les plaques de moule, les entrées de moule, les détails du modèle, les détails de la broche d'éjection et un résumé de la configuration.

Réglages du moule

Complétez les paramètres de moule chaque fois qu'une nouvelle configuration est créée. Les paramètres du moule incluent le nom du moule et le nombre d'empreintes avec capteurs et, le cas échéant, le nombre d'obturateurs et d'états d'obturateurs. Les informations sur l'obturateur de seuil ne seront affichées que si une licence d'obturateur de seuil a été achetée.

Nom du Moule, Nombre de Cavités avec Capteurs

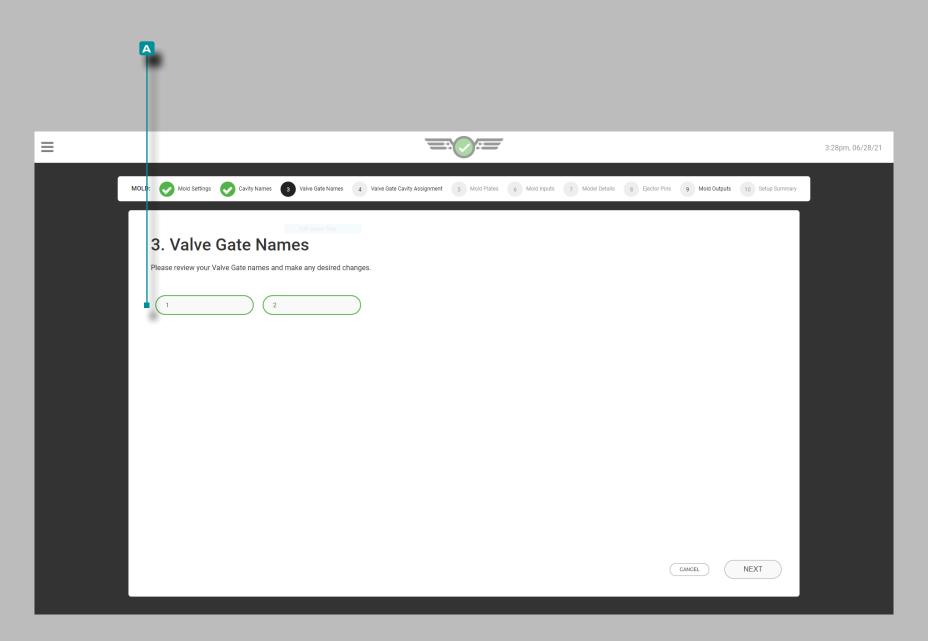
Appuyez ♣ sur le champ et entrez Į le ⚠ nom du moule dans le champ fourni. Les noms de moule sont obligatoires, doivent être uniques et peuvent comprendre entre 1 et 20 caractères, y compris les majuscules, les alphanumériques, les espaces et les caractères spéciaux - ou #.


Appuyez sur le champ et entrez | le | nombre de cavités avec capteurs. Le nombre de cavités avec la quantité de capteurs est requis et peut être un nombre entier compris entre 1 et 512.

Nombre d'Obturateurs de Seuil (le cas échéant)

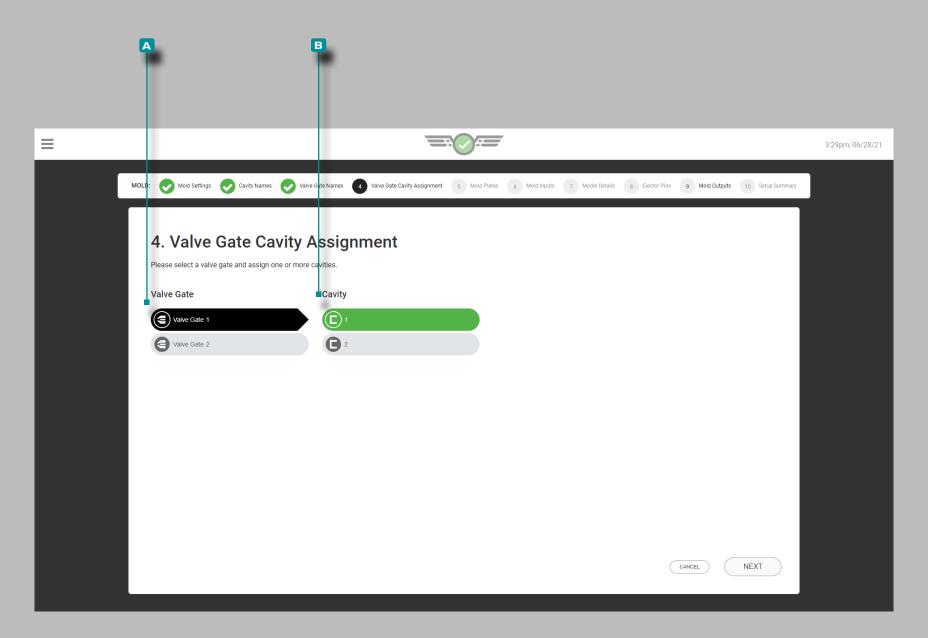
Appuyez sur ♣ le champ et saisissez ∤ le c nombre d'obturateurs de seuil. La quantité de nombre de vannes est requise pour les utilisateurs de vannes et peut être un nombre entier compris entre 1 et 99.

Piezo[electric] Remise à Zéro du Capteur


Appuyez sur ♣ le curseur pour sélectionner ▶ ALLUMÉ/ÉTEINT ; (i) ALLUMÉactivera l'option de mise à zéro retardée du capteur piézoélectrique pendant la configuration du moule, tandis que ÉTEINT conservera la valeur par défaut de la mise à zéro du capteur piézoélectrique. Reportez-vous à «Réglage avancé : Mise à Zéro du Capteur Piézoélectrique» on page 174 pour plus d'informations sur cette option.

Noms des cavités

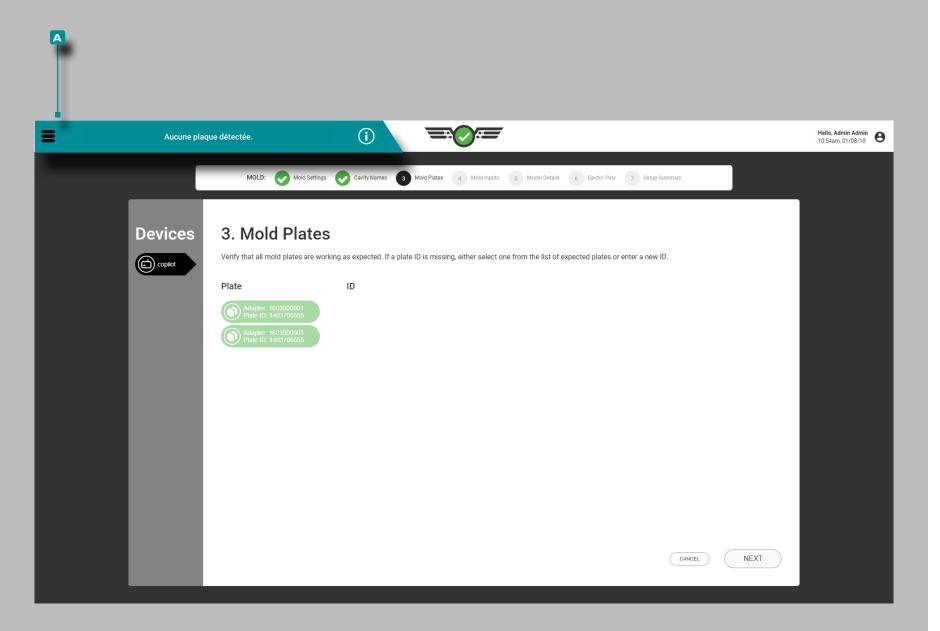
Les empreintes doivent être nommées avant de leur attribuer des capteurs Le système remplira automatiquement les champs avec des chiffres dans l'ordre croissant.


Pour modifier les noms de cavité attribués par le système, appuyez sur un champ et entrez | le (s) nom (s) de la cavité dans le (s) champ (s) fourni (s). Les noms d'empreinte sont obligatoires, doivent être uniques et peuvent comprendre entre 1 et 20 caractères, y compris les majuscules, les alphanumériques, les espaces et les caractères spéciaux - ou #.

Noms des Obturateur

Les obturateurs de seuil doivent être nommés avant d'attribuer des capteurs aux obturateurs de seuil. Le système remplira automatiquement les champs avec des chiffres dans l'ordre croissant.

Pour modifier les noms d'obturateur de seuil attribués par le système, appuyez sur un champ et entrez | le (s) nom (s) d'obturateur de seuil dans le(s) champ(s) fourni(s). Les noms d'obturateur de seuil sont requis pour les utilisateurs d'obturateur de seuil, doivent être uniques et peuvent comporter de 1 à 10 caractères, y compris les majuscules, les caractères alphanumériques, les espaces et les caractères spéciaux - ou _.



Affectations des Cavités à Obturateur de Seuil

Si obturateurs sont utilisés, appuyez sur le A Vanne à partir de la liste d'entrée, puis appuyez sur un B Cavité dans la liste pour assigner l'obturateur de soupape sélectionné dans la cavité choisie. Chaque obturateur doit être affecté à une cavité; un seul obturateur peut être affecté à plusieurs cavités et plusieurs obturateurs peuvent être affectés à une seule cavité.

Si un moule configuré précédemment est déplacé vers une autre machine avec des modules OR2-M, les affectations de cavités d'obturateur de seuil doivent être réaffectées.

(i) **REMARQUE** Les affectations d'obturateurs de seuil ne peuvent pas être modifiées pendant l'exécution d'une tâche.

Plaques de Moule

Vérifiez que toutes les plaques de connexion du capteur de moule connectées fonctionnent correctement ; si une plaque de connecteur de capteur connectée n'apparaît pas dans la liste, entrez un nouvel ID de plaque ou sélectionnez-en une parmi les plaques répertoriées.

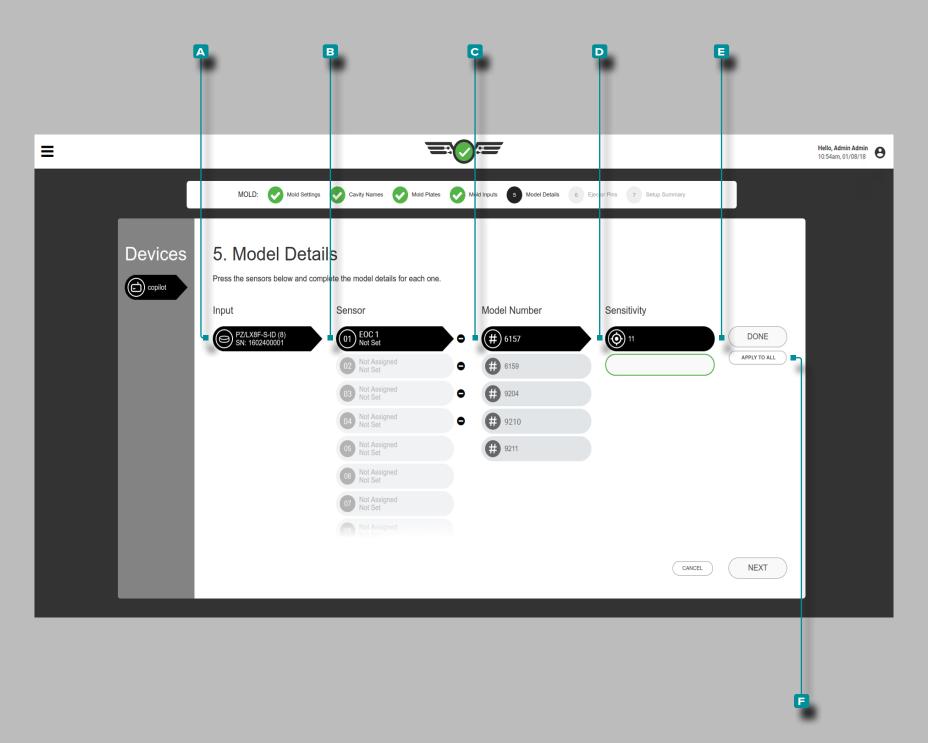
Si aucune plaque de moule n'est connectée, une notification A indiquera qu'aucune plaque n'a été détectée.

(i) **REMARQUE** Adaptateurs de sondes de température n'apparaissent pas sur la page d'identification moule mais plutôt sur la page ENTRÉES moule.

Entrées Moule

Complétez les entrées de moule chaque fois qu'une nouvelle configuration est créée. Affectez chaque capteur de pression d'empreinte dans le logiciel à l'emplacement où il se trouve physiquement dans le moule et l'empreinte. Les capteurs de pression de cavité peuvent être affectés à un emplacement de post-porte (PG), de milieu de cavité (MID) ou de fin de cavité (EOC) dans une cavité ; les capteurs de température peuvent être affectés à un emplacement de surface de moule, d'entrée d'eau et de sortie d'eau en plus des emplacements PG, MID et EOC ; les capteurs de déflexion de moule peuvent être affectés à l'emplacement de la ligne de séparation du moule ; et les modules d'identification de moule (

ID) ID/LX1-S peuvent être affectés à un moule.


Capteurs, Empreinte, Emplacement et ID

Appuyez sur A l'entrée dans la liste des entrées, puis appuyez sur un B capteur dans la liste, puis appuyez dessus pour sélectionner une c-cavité dans le menu déroulant; appuyez pour sélectionner un D i emplacement parmi les options pour affecter le capteur à un emplacement de cavité.

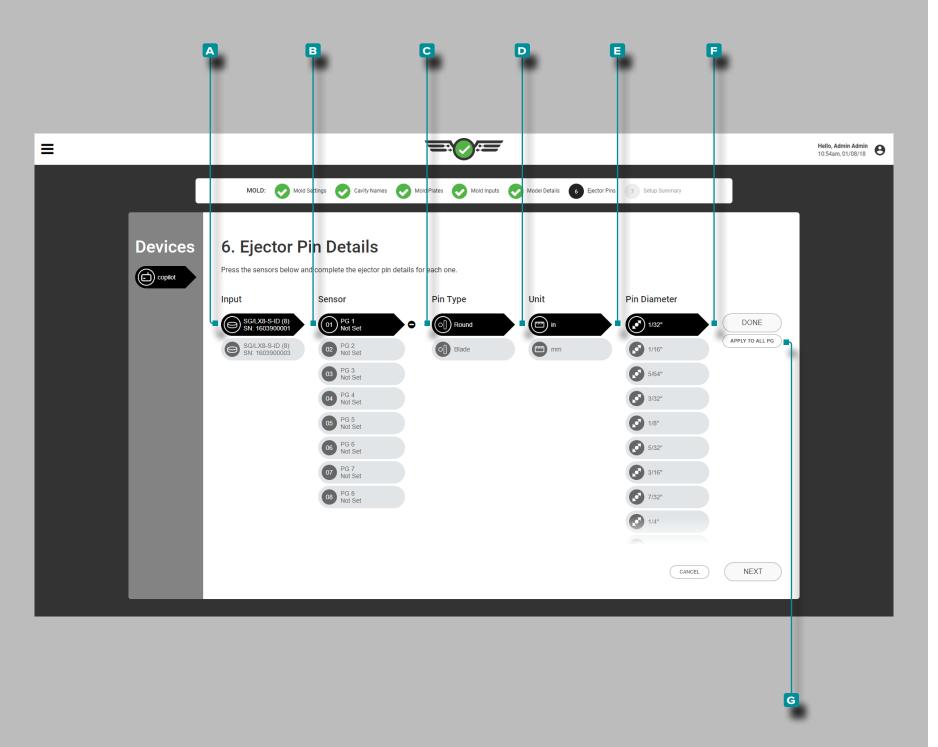
Si plusieurs capteurs sont présents au même endroit dans une cavité, un identifiant de capteur est requis. Appuyez sur le champ ID et saisissez | l'ID souhaité. Mull du capteur doit être unique et peut comporter entre un et douze caractères, y compris des majuscules, des caractères alphanumériques, des espaces et des caractères spéciaux - ou _. Appuyez sur le bouton FAITE pour enregistrer la configuration de l'emplacement du capteur.

Facultativement, appuyez sur le bouton G APPLIQUER À TOUS LES CAPTEURS pour appliquer l'emplacement sélectionné à tous les capteurs de pression d'empreinte connectés à l'entrée de moule sélectionnée; chaque capteur doit tout de même être affecté à une empreinte.

- ✓ MISE EN GARDE La modification de l'ID de cavité OU de l'emplacement d'un capteur précédemment attribué (PG, MID ou EOC) supprimera toutes les limites et les alarmes process associées à l'emplacement de la cavité OU de la cavité précédemment attribué à ce capteur ; les limites de process et les alarmes doivent être configurées à nouveau pour la nouvelle cavité OU emplacement.
- (i) **REMARQUE** Les attributions d'emplacement / type de capteur ne peuvent pas être modifiées lorsqu'une tâche est en cours d'exécution.

Détails du modèle

Complétez les idétails du modèle de capteur chaque fois qu'une nouvelle configuration est créée. Le système utilise les informations pour calculer la mise à l'échelle et afficher les pressions d'empreinte correctes sur le moniteur de process, le tableau des valeurs de cycle et le graphique de cycle.


(i) **REMARQUE** Le modèle de capteur ne peut pas être modifié lorsqu'une tâche est en cours d'exécution.

Capteurs, Numéro de Modèle et Sensibilité

Certains capteurs sont automatiquement détectés par le logiciel et reçoivent le bon modèle, tandis que d'autres doivent se voir attribuer leur modèle.

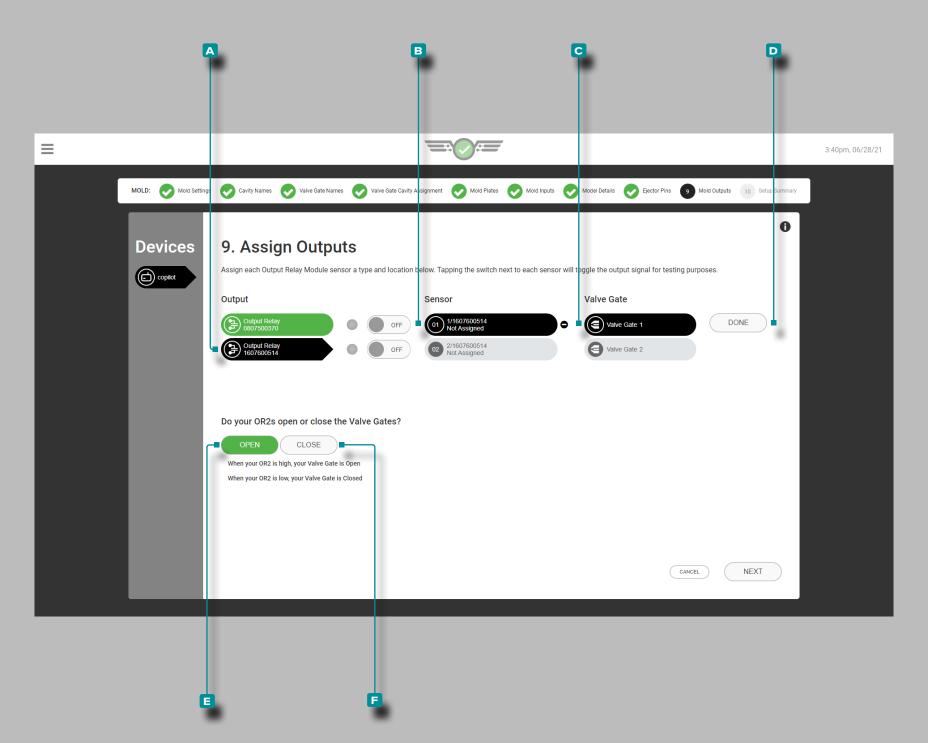
Appuyez sur le A capteur / adaptateur dans la liste des entrées, puis appuyez dessus pour sélectionner un capteur et un capteur piézoélectrique, appuyez sur la capteur est un capteur piézoélectrique, appuyez sur la capteur piézoélectrique, appuyez la sensibilité indiquée pour le capteur, OU entrez | la sensibilité indiquée sur le certificat d'étalonnage du capteur (livré avec chaque capteur).

Appuyez sur le bouton FAITE pour enregistrer la configuration de l'emplacement du capteur. Facultativement, appuyez sur le bouton FAPPLIQUER À TOUS pour appliquer le modèle sélectionné à tous les capteurs.

Détails de l'éjecteur

Complétez les détails de la broche d'éjection chaque fois qu'une nouvelle configuration est créée. Le système utilise le capteur, le type de broche et le diamètre de broche correspondants pour calculer la mise à l'échelle et afficher les pressions d'empreinte correctes sur le moniteur de process, le tableau des valeurs de cycle et le graphique de cycle.

(i) **REMARQUE** Les données sur la broche d'éjection ne peut pas être modifiées lorsqu'une tâche est en cours d'exécution.


Capteurs, Type de Broche, Unités, Diamètre de Broche

Appuyez sur A l'entrée dans la liste des entrées, puis appuyez sur le capteur dans la liste des capteurs, puis appuyez sur pour sélectionner un c type de broche; touchez pour sélectionner les unités (de mesure) de la broche, puis touche z pour sélectionner ou saisir | le c diamètre de la broche.

Appuyez • sur le bouton F FAITE pour enregistrer la configuration de l'emplacement du capteur.

Si vous le souhaitez, appuyez sur le bouton APPLIQUER À TOUS pour appliquer le type et le diamètre ou la zone de broche d'éjection sélectionnés à tous les capteurs du même emplacement (PG, MID, EOC).

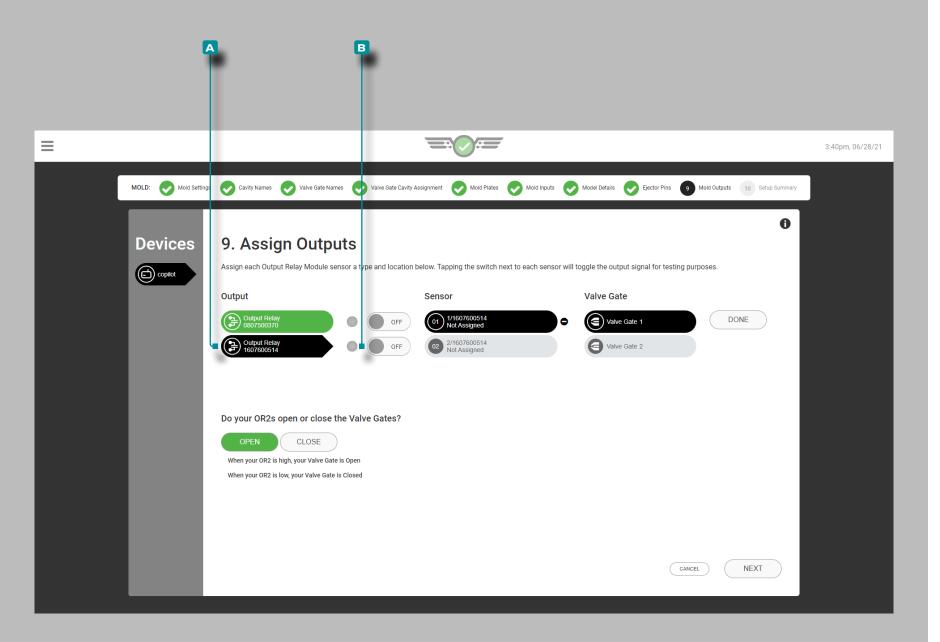
(i) **REMARQUE** Les capteurs de température, de pression d'empreinte encastrée et de déflexion du moule ne nécessitent pas de sélection de type de broche ou l'unité de mesure et de diamètre associés requis pour les autres capteurs de type bouton.

Sorties Moule

Terminez les isorties de moule chaque fois qu'une nouvelle configuration d'obturateur de seuil est créée. Les sorties de moule sont des modules de sortie à double relais (OR2-M) qui sont affectés à un capteur et à un obturateur pour ouvrir ou fermer l'obturateur.

- (i) **REMARQUE** Les emplacements des obturateurs de seuil et des capteurs ne peuvent pas être modifiés pendant l'exécution d'une tâche.
- DEFINITION OUTPUT—obturateur Une sortie de relais qui permet à la vanne d'obturation assignée de s'ouvrir ou de se fermer à l'aidepression, position, température, temps, des entrées de séquence ou le fonctionnement d'autres obturateurs de seuil.

Capteur et Obturateur de Seuil

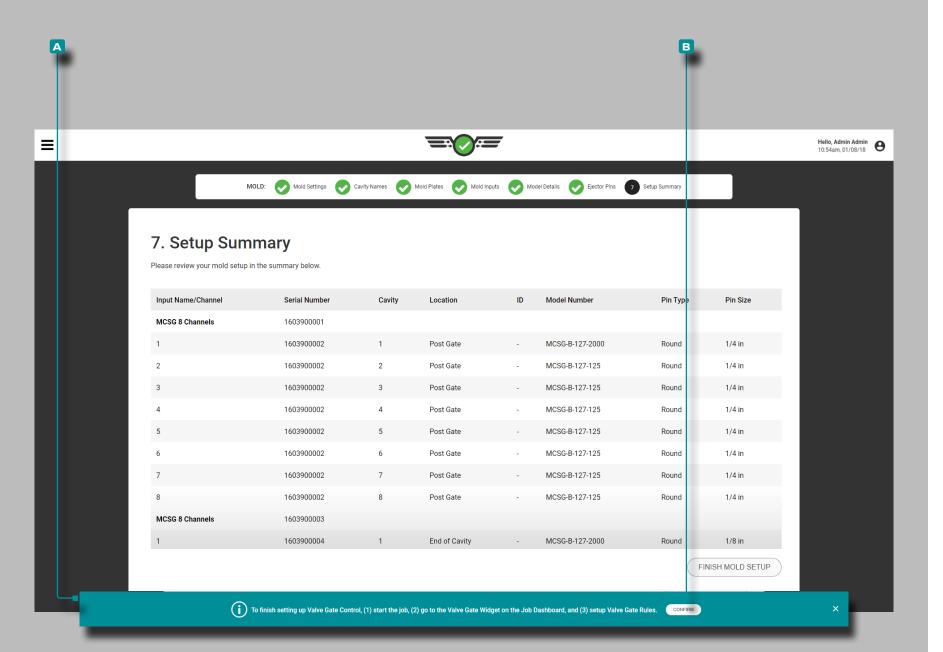

Appuyez sur la sortie A dans la liste des sorties, puis appuyez sur un capteur dans la liste, puis appuyez sur pour sélectionner un obturateur de vanne pour affecter l'obturateur de vanne à un capteur.

Appuyez • sur le bouton D FAITE pour enregistrer la configuration de l'emplacement du capteur.

Appuyez sur le bouton le OUVERT ou le FERMÉ pour sélectionner les obturateurs qui sont normalement ouverts (NO) ou normalement fermés (NC). La sélection des états d'obturateur de seuil est requise pour les utilisateurs d'obturateur de seuil.

La position par défaut de certains solénoïdes d'obturateur de vanne est fermée - les commandes doivent ouvrir la vanne. La position par défaut de certains solénoïdes d'obturateur de seuil est ouverte - les commandes doivent fermer l'obturateur.

Toutes les portes se verront attribuer une porte ouverte ou une porte fermée. Les utilisateurs ne peuvent pas affecter un côté d'un OR2-M pour ouvrir la porte et l'autre côté pour fermer la porte.

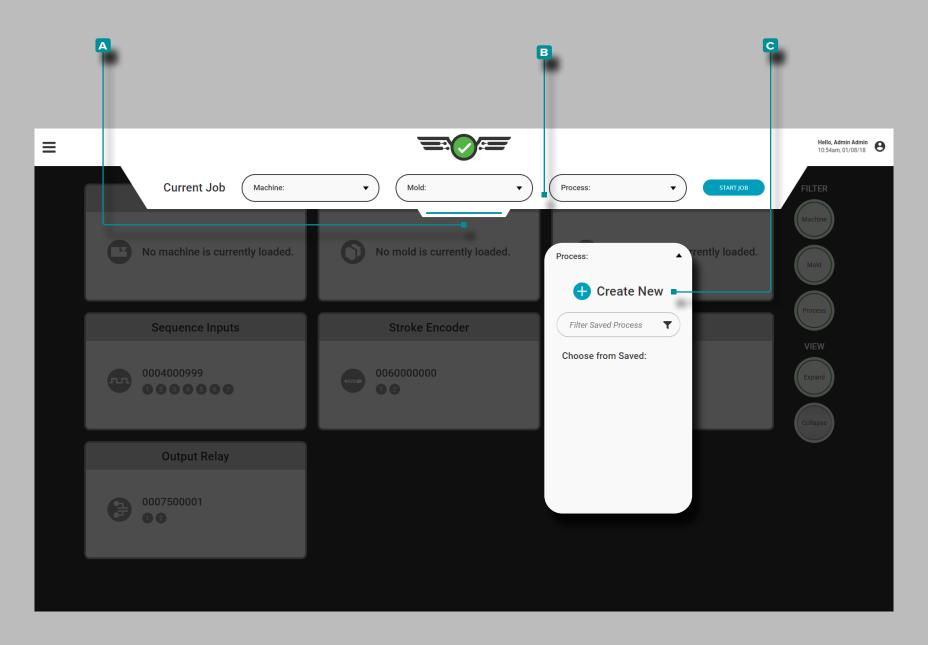


Tester les Sorties d'Obturateur de Seuil

Testez les sorties pour le fonctionnement de l'obturateur de seuil.

Appuyez 🖢 sur le 🛕 relais de sortie pour le sélectionner.

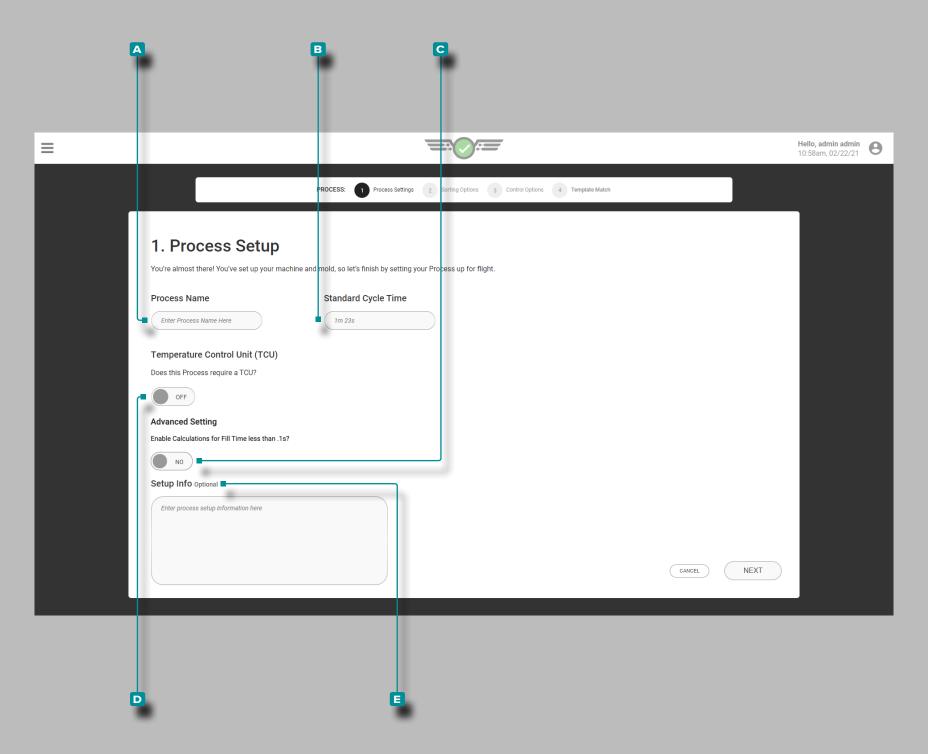
Appuyez & surle bouton B MARCHE / ARRÊTà côté de la sortie attribuée pour vérifier que le dispositif de contrôle connecté effectue l'action appropriée.



Résumé de la Configuration

Le résumé de la configuration du moule fournit une vue globale de chaque élément de configuration du capteur de moule, y compris le nom / canal d'entrée, le numéro de série, l'empreinte, l'emplacement, l'ID (si attribué), le numéro de modèle, le type de broche et la taille de la broche.

Si des obturateurs de seuil sont affectés, la sortie name/channel, le numéro de série, l'emplacement, l'obturateur de seuil et l'ID seront affichés. Une notification A s'affichera avec des instructions pour terminer la configuration de l'obturateur de seuil ; lisez les instructions, puis appuyez sur Le bouton CONFIRMER pour continuer la configuration.


Vérifiez que toutes les informations sont correctes dans le résumé de la configuration du moule avant de terminer la configuration du moule.

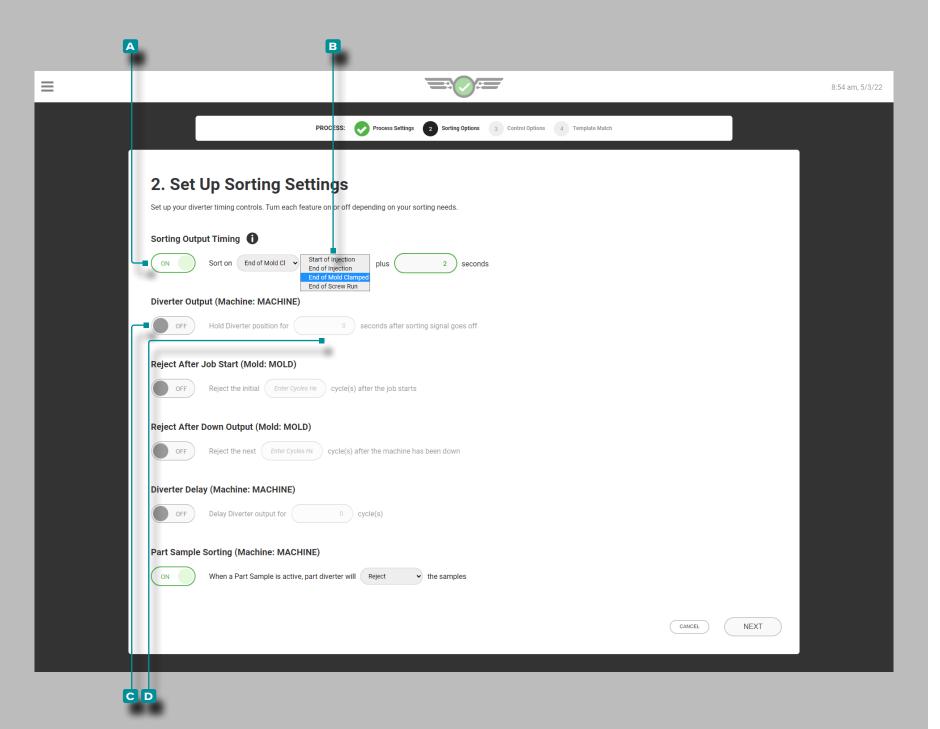
Configuration du Process

Appuyez , maintenez et faites glisser le A-menu déroulant pour accéder à la configuration de la machine. Appuyez sur le menu déroulant Process, puis sur Appuyez pour sélectionner l'option Créer un nouveau processus.

Complétez la configuration du process chaque fois qu'une nouvelle configuration est créée. La configuration du processus comprend les paramètres de processus, les options de tri, les paramètres généraux (si vous utilisez le contrôle d'obturateur de seuil), les options de contrôle et les options de correspondance de modèle.

Paramètres Process

Complétez les paramètres process chaque fois qu'une nouvelle configuration est créée. Les paramètres de processus incluent le nom, le temps de cycle standard ; en option, les informations de configuration, le TCU et les sélections de temps de remplissage rapide sont également disponibles à partir de la page Paramètres de processus.


Nom du processus, temps de cycle standard, connexion TCU et informations de configuration

Appuyez sur puis saisissez | le nom du process dans le champ prévu à cet effet. Les noms de process sont obligatoires, doivent être uniques et peuvent comporter entre 1 et 20 caractères, y compris les majuscules, les alphanumériques, les espaces et les caractères spéciaux - ou #.

- ✓ MISE EN GARDE Le temps de cycle doit être précis; le non-respect de cette consigne entraînera le calcul de valeurs inexactes par le logiciel.
- (i) REMARQUE Si un temps de cycle court entraînant un temps de remplissage rapide/des temps de remplissage inférieurs à 0,1 seconde est entré, un signal de 1ère et 2ème étape doit être attribué dans les paramètres de séquence de la machine, OU les utilisateurs devront utiliser la fonction Définir le volume de remplissage au curseur pour calculer le temps de remplissage. Reportez-vous à «Paramètres Avancés: Activation du Temps de Remplissage Rapide» on page 173, et à «Régler le volume de remplissage au curseur» on page 72.

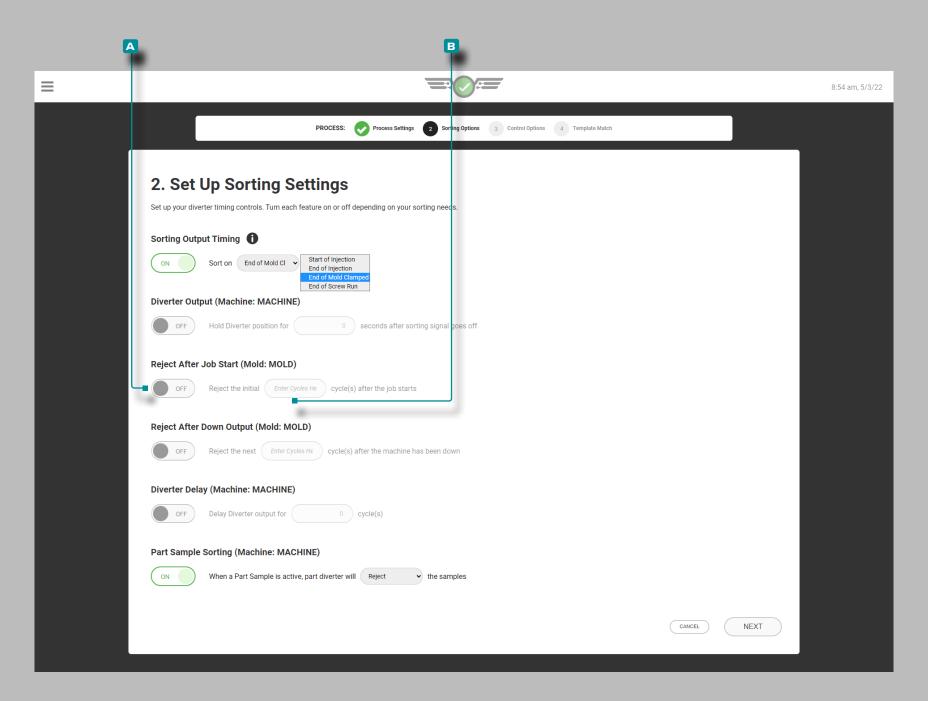
Si une unité de commande de température (TCU) est connectée, cliquez pour sélectionner Allumé ou éteint pour permettre la visualisation et le réglage des alarmes pour le TCU du système CoPilot. Le canal série TCU doit être réglé sur 0 et le débit en bauds doit être réglé sur 9600. Reportez-vous à la page 58 pour plus d'informations sur le réglage des alarmes.

Appuyez sur le champ et entrez | les | informations de configuration dans le champ fourni. Les informations de configuration sont facultatives et peuvent comporter entre 0 et 300 caractères. Les informations de configuration sont accessibles sur la page Process Monitor.

Options de Tri

Complétez les paramètres de tri chaque fois qu'une nouvelle configuration est créée. Les paramètres de tri incluent la temporisation de la sortie de tri, la sortie de l'aiguillage avec temporisation de maintien de l'aiguillage, le rejet après le démarrage du travail, le rejet après la temporisation de l'arrêt, la temporisation de la sortie de l'aiguillage et le tri des échantillons de pièces.

Trier la Synchronisation de Sortie


Appuyez pour sélectionner A ALLUMÉ ou fÉTEINT pour ajuster la synchronisation de sortie de tri ; toucher pour sélectionner une pour sélectionner une pour sélection, fin devisser coulé ou fin de moule fermer le champ), puis entrez | le nombre desecondes à ajouter à l' option de tri sélectionnée.

- (i) REMARQUE Lorsque la synchronisation de la sortie de tri est désactivée, le système trie par défaut à la fin du moule fermer; lorsque la temporisation de sortie de tri est activée, le système trie à la fin de l'injection plus le nombre desecondes. Si la fin d'injection plus le nombre desecondes est plus long que la fin du moule fermer, la fin du moule fermer sera utilisé.
- (i) **REMARQUE** Le temps de sortie de tri est défini par défaut sur Fin du moule serré lorsque CoPilot Go est utilisé; reportez-vous à «Co-Pilot Aller» on page 12 pour plus d'informations sur CoPilot Go.
- ✓ MISE EN GARDE Lors du tri d'un timing de sortie autre que Fin de moule fermer est sélectionné, le refroidissementtemps l'alarme sera indisponible. Si le tri des délais de sortie est autre que la fin du moule fermer est ajouté après la présence d'une alarme de refroidissement, un message d'erreur s'affichera et tous les cycles seront rejetés jusqu'à ce que le refroidissementtemps l'alarme est supprimée.

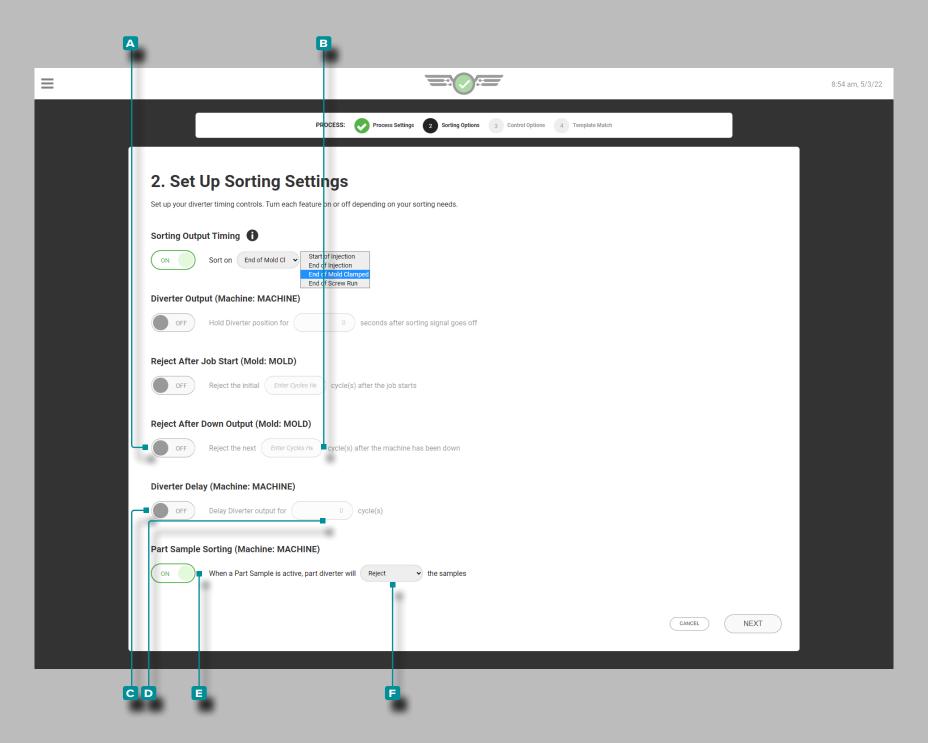
Sortie de Déflecteur

Appuyez • pour sélectionner • ALLUMÉ ÉTEINT ou ÉTEINT pour la position de l'inverseur; appuyez • sur le champ et entrez | le • temps de maintien de l'inverseur

(i) **REMARQUE** L'équipement de tri doit être configuré de sorte que toutes les pièces de la file d'attente arrivent dans le même ordre que celui dans lequel les valeurs hors correspondance sont calculées.

Paramètres de Tri (suite)

Rejeter Après le Démarrage du Travail


L'option de tri de rejeter après le début du travail rejettera le nombre spécifié de parts/cycles au démarrage du travail, si activé. Si le nombre de Rejeter après le démarrage du travail est modifié alors que Rejeter après le démarrage du travail est actif, le décompte sera réinitialisé à la nouvelle entrée. Le système rejettera le nombre de cycles nouvellement entré même s'il avait précédemment rejeté certains cycles en fonction du réglage précédent.

Appuyez ♣ pour sélectionner ⚠ ALLUMÉ ou ÉTEINT pour activer ou désactiver le rejet au démarrage du travail ; appuyez sur ♣ le champ et entrez | le 🖪 🕦 nombre de parts/cycles à rejeter au démarrage du travail.

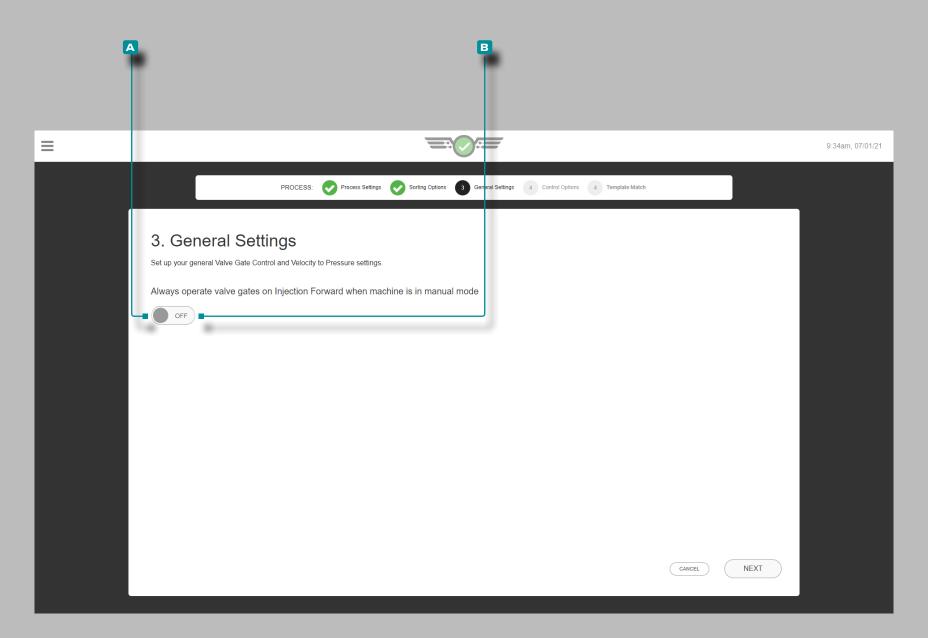
Si le système CoPilot s'arrête ou n'effectue pas de cycle au début de la tâche, rejetez le nombre de cycles le plus élevé à partir de Rejeter après le démarrage de la tâche ou de Rejeter après arrêt si les deux sont activés.

Si l'utilisateur démarre un échantillon pendant l'état Rejeter après le début du travail, le widget Échantillonneur s'affichera en attendant le prochain cycle jusqu'à ce que le nombre de rejets après le début du travail ait expiré.

(i) **REMARQUE** Seuls les utilisateurs disposant d'un rôle d'ingénieur de processus peuvent modifier ce paramètre.

Paramètres de Tri (suite)

Rejeter en + Après la Sortie rebut


Appuyez ♣ sur pour sélectionner ▲ ALLUMÉ ou ÉTEINT pour les cycles de rejet; appuyez ♣ sur le champ et entrez | le B rejet après la fin du temps.

Retard de Déflecteur

Appuyez • pour sélectionner • ALLUMÉ ou ÉTEINT pour le délai de déviation. Si on le désire; appuyez • sur le champ et entrez | la temporisation du • délai de sortie du déviateur.

Tri des Echantillons de Pièces

Tapez ♣ pour sélectionner ► ALLUMÉ ou ÉTEINT pour le tri des échantillons partiels, puis tapez sur ♣ le menu déroulant pour sélectionner si ► conserver ou rejeter les échantillons lorsque les échantillons partiels sont actifs. Reportez-vous à la «Échantillonneur de Pièces» on page 140 pour obtenir des informations et des instructions sur l'échantillonneur de pièces.


Réglages Généraux

Cette option est réservée aux utilisateurs de la commande d'obturateur de seuil. Effectuez les réglages généraux à chaque fois qu'une nouvelle configuration de processus de commande d'obturateur de seuil est créée.

Pour pouvoir purger à travers le moule et les obturateurs, appuyez sur pour sélectionner ALLUMÉ afin que les obturateurs s'ouvrent même en mode manuel et laissent passer le matériau; appuyez sur pour sélectionner EETEINTsi cela n'est pas souhaité.

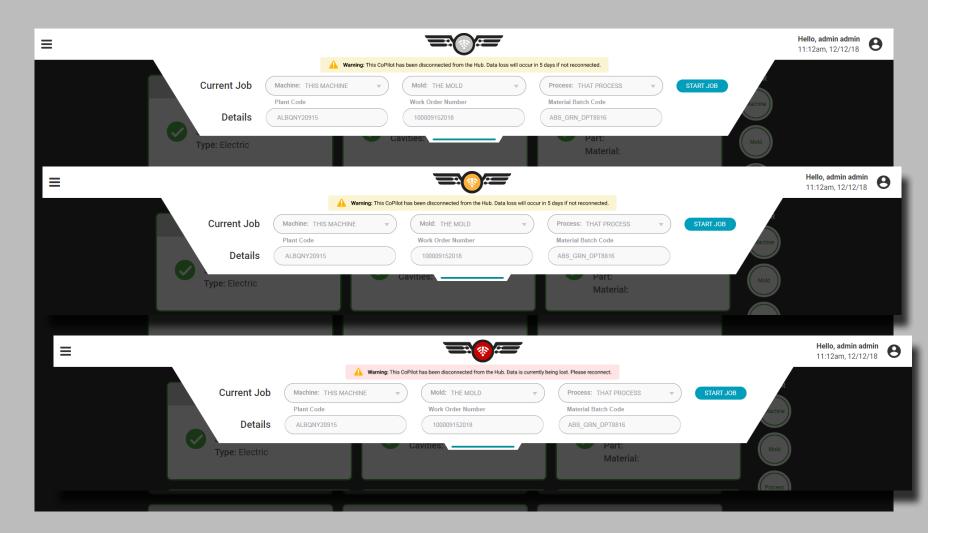
Un signal de séquence machine en manuel doit être connecté et affecté dans la configuration de la machine afin de faire fonctionner les commandes d'obturateur de seuil en mode manuel.

Ce paramètre peut également être activé après la configuration pendant qu'un travail est en cours d'exécution à partir de la carte du tableau de bord Paramètres généraux de la commande d'obturateur de seuil; reportez-vous à la section «Réglages Généraux du Contrôle d'Obturateur de Seuil» on page 135.

Options de Pilotage

Complétez les options de contrôle chaque fois qu'une nouvelle configuration est créée. Les options de contrôle déterminent les paramètres de rebuts excessifs, y compris la synchronisation de la sortie active et la valeur des cycles consécutifs.

Si vous le souhaitez, appuyez pour sélectionner A ALLUMÉ ou ÉTEINT pour le contrôle des rebuts excessifs ; appuyez sur le champ et entrez | la temporisation de rebut de sortie active et la valeur des cycles consécutifs.


Modèle de Correspondance et Conseils avec MAX

Complétez les options de correspondance de modèle chacunetemps une nouvelle configuration est créée. Les options de correspondance de modèle déterminent les pourcentages bons et d'avertissement qui seront utilisés pour comparer les valeurs de modèle de processus du graphique de cycle pour les valeurs de processus du moule, de la machine et du matériau.

Les paramètres de correspondance de moule et de machine sont par défaut de 3 % pour un bon pourcentage de correspondance et de 7 % pour un pourcentage de correspondance d'avertissement. Les paramètres de correspondance des matériaux sont par défaut de 10 % pour un bon pourcentage de correspondance et de 20 % pour un pourcentage de correspondance et de 20 % pour un pourcentage de correspondance d'avertissement. Si aucune valeur n'est saisie pour les pourcentages de correspondance bon et avertissement, le(s) cadran(s) ne seront pas actifs sur le tableau de bord des travaux au démarrage du travail.

Si vous le souhaitez, appuyez sur pour sélectionner A ALLUMÉ ou ÉTEINT pour activer ou désactiver la correspondance de modèle ; appuyez sur un champ et entrez | le c pourcentage de correspondance correcte et le pourcentage de correspondance d'avertissement pour Moule, Machine, and/or Valeurs matérielles.

Si vous le souhaitez, appuyez pour sélectionner ALLUMÉ ou ÉTEINT pour activer ou désactiver les conseils avec MAX (reportez-vous à page 95 pour plus d'informations sur les conseils avec MAX).

Erreurs de Configuration

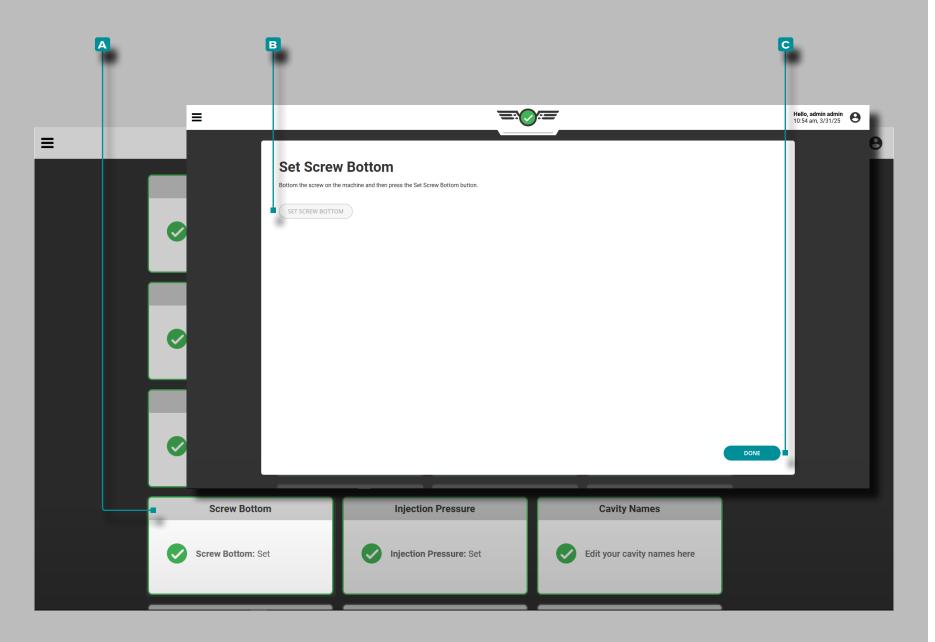

Déconnexion du Hub

Si le système CoPilot est déconnecté du logiciel The Hub, l'icône du système CoPilot changera en fonction de la durée de déconnexion. Le ou les enregistrements indisponibles seront grisés. Les enregistrements peuvent être utilisés avec d'anciennes données de configuration, mais si des modifications sont apportées pendant la déconnexion, l'enregistrement existant sur The Hub sera remplacé lorsque la connexion sera rétablie.

L'icône change lorsque le système CoPilot a été déconnecté

- moins de 12 jours,
- plus de 12, mais moins de 14 jours, et
- plus de 14 jours.

Un message d'avertissement s'affichera également indiquant combien de temps la connexion doit être restaurée avant de perdre des données lorsque le volet de configuration de la tâche est développé.


Tableau de Bord de Configuration

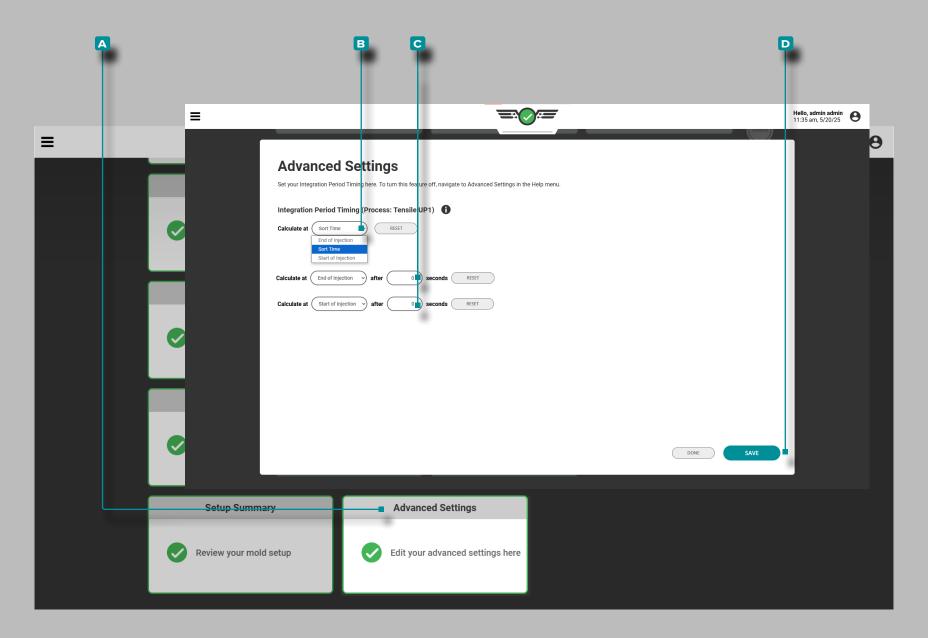
Configuration des Cartes du Tableau de Bord

Le tableau de bord de configuration affichera des A cartes détaillant les paramètres actuels de la machine, du moule et du process.

Appuyez & sur une A carte pour afficher et / ou modifier rapidement le paramètre sélectionné.

Appuyez sur le (s) bouton (s) Machine, moule ou B filtre de process pour afficher ou masquer les cartes associées; appuyez sur les boutons Développer ou Réduire C la vue pour afficher plus ou moins d'informations sur les cartes.

Tableau de Bord de Configuration (suite)


Vis de Réglage Inférieure du Tableau de Bord de Configuration

Si le fond de la vis n'a pas été réglé lors de la configuration de la machine, ou si le fond de la vis doit être réinitialisé, utilisez la **A** carte Fond de la vis sur le tableau de bord de configuration pour régler le fond de la vis.

Le logiciel calcule la course et le volume injecté à partir de la position de la vis reculée réglée et de l'indicateur de course (LE-R-50 ou IA1-M-V). L'arrière de la vis est le point zéro de l'indicateur de course de la machine.

Depuis le tableau de bord de configuration, appuyez sur la la carte Vis inférieure, puis appuyez physiquement sur la vis de la machine et appuyez sur le bouton li Vis inférieure de réglage. Appuyez sur le bouton ci TERMINÉ pour quitter la carte de configuration du tableau de bord inférieur de la vis de réglage.

(i) **REMARQUE** Le fond de la vis doit être réglé chaque fois qu'une configuration est créée. Le CoPilot ne mémorise pas cette position et le matelas ne sera pas correctement calculé si le fond de la vis n'est pas réglé après chaque démarrage de la machine, changement de tâche ou mise hors tension du système CoPilot.

Définir la Durée de la Période d'Intégration à Partir des Paramètres Avancés, Tableau de Bord de Configuration Carte

Le système CoPilot utilise la fin de l'injection pour la limite d'intégration, mais avec certaines applications, il peut être nécessaire d'utiliser un délai avant la fin de l'injection pour calculer les données afin d'annuler un pic de pression dans la cavité plus tard pendant l'injection qui n'est pas critique pour la qualité de la pièce.

Par défaut, le système CoPilot utilise le début de l'injection jusqu'à la fin de l'injection pour les calculs d'intégration.

Les limites d'intégration peuvent être définies *par un ingénieur de processus* au début de l'injection jusqu'au début de l'injection plus une heure (en secondes), à la fin de l'injection plus une heure (en secondes), ou rétablies à la valeur par défaut en sélectionnant « heure de tri ».

Le temps d'intégration affecte les calculs de variables récapitulatives suivants ; tous les autres calculs de variables récapitulatives ne sont pas affectés:

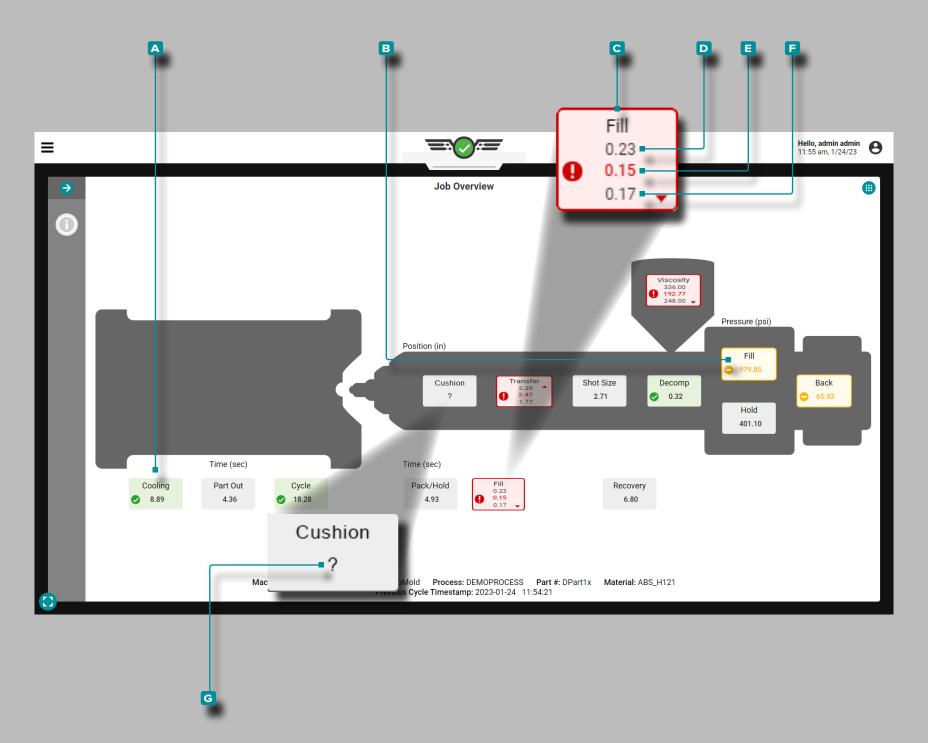
- Extrémité supérieure de la cavité, porte de poteau, cavité médiane
- · Cycle intégral Fin de cavité, Post Gate, Milieu de cavité
- Temps de remplissage et d'emballage pour la fin de la cavité, la porte de poteau et le milieu de la cavité
- Remplir et emballer intégralement pour l'extrémité de la cavité, le portail de poteau etla cavité médiane

Si le début de l'injection plus un temps est plus long que le temps d'injection, les variables récapitulatives seront calculées au début de l'injection plus un temps.

Si le temps limite d'intégration spécifié ne se produit pas avant le temps de tri, le temps limite d'intégration est calculé jusqu'au temps de tri.

Depuis le tableau de bord de configuration, appuyez sur la carte A Paramètres avancés, puis appuyez sur le B délai d'intégration souhaité dans le menu déroulant; si sélectionné, entrez les c secondes après le début ou la fin de l'injection.

Appuyez sur le bouton D TERMINÉ pour quitter la carte du tableau de bord A Paramètres avancés.


(i) REMARQUE La carte du tableau de bord des paramètres avancés ne sera disponible que si l'utilisateur a activé les paramètres avancés: Durée de la période d'intégration dans le Diagnostics>Advanced Page Paramètres; reportez-vous à «Paramètre avancé: Calendrier de la période d'intégration» on page 175.

Hello, Admin Admin 10:54am, 01/08/18 Cycle Graph 2020-03-03 13:24:04 **Alarm Settings** Sort By: Type Alarm Type ▼ =:(V:= 11:15am. 06/29/3 MOLD No alarms are currently active. **Choose a Card View** MACHINE No alarms are currently active. REMOVE Job Overview Mold Machine Selected Time Range Machine: MACHINE Mold: MOLD Part #: Material: Previous Cycle Timestamp: 2020-03-03 13:23:46

Tableau de Bord

La vue Tableau de bord des tâches offre de l'espace pour afficher simultanément jusqu'à quatre widgets ; les widgets sélectionnables incluent la présentation de la tâche, les paramètres d'alarme, le graphique de cycle, la correspondance de modèle, les conseils avec MAX, le graphique récapitulatif, les valeurs de cycle précédent, le temps de remplissage de la cavité, la pression de pointe : fin de cavité, le contrôle de la vitesse à la pression (V→P), l'obturateur de vanne. Vues Contrôle (si licence), Échantillonneur de pièces, Suspendre le tri et Notes. Les widgets Graphique du cycle et Graphique récapitulatif peuvent être affichés plusieurs fois sur le tableau de bord des travaux.

Pour sélectionner le widget à afficher dans un quadrant, appuyez sur le bouton A d'affichage de la vue situé dans le coin supérieur droit de chaque vue, puis appuyez sur pour sélectionner le widget souhaité. Pour redimensionner les widgets visibles, appuyez, maintenez et faites glisser le bouton de redimensionnement vers le haut, le bas, la gauche ou la droite; pour développer un widget en plein écran, faites glisser le bouton de redimensionnement jusqu'à ce que le widget atteigne sa taille maximale, ou appuyez deux fois sur le widget.

Vue d'Ensemble du Travail

Valeurs de Process

Les valeurs de process, y compris les temporisations, les positions, les pressions et la viscosité du matériau, sont affichées dans la vue d'ensemble des tâches du tableau de bord des travaux, avec des limites inférieures, des valeurs cibles et des limites supérieures (si des limites sont définies).

Si le processus se situe dans les limites d'alarme supérieure et inférieure, il est « conforme » ou « bon » ; les cases des valeurs de processus conformes/bonnes sont A vertes. Si le processus est dans les limites d'avertissement, les cases de valeur de processus sont a jaunes. Si le processus est en dehors des limites supérieures ou inférieures, il est «hors correspondance» ; Les cases de valeurs de process hors concordance sont c rouges. Si une valeur de process n'a pas de limites d'alarme correspondantes définies, la zone de valeur de process est grise.

Appuyez • longuement sur une valeur de process pour afficher les limites d'alarme supérieure et inférieure définies. La D limite d'alarme supérieure, la E valeur actuelle et la F limite d'alarme inférieure de chaque valeur sont affichées dans l'aperçu de la tâche.

Une icône dans chaque case indique si la valeur de procédé est dans la plage cible , en avertissement , hors plage , au - dessus de la limite supérieure ou en dessous de la limite inférieure .

Si le système CoPilot ne peut pas calculer une ou plusieurs valeurs de processus, un point d'interrogation (?) s'affiche dans la ou les zones de valeurs de processus.

Hello, Admin Admin 9:30am, 01/08/18 Job Overview 336.00 192.77 248.00 🔷 Pressure (psi) Position (in) 2049.45 Decomp Back 0.32 161.17 1.44 3.15 838.83 Time (sec) Time (sec) Pack/Hold Cooling Part Out Cycle Recovery **Q** 0.15 4.38 18.37 4.95 6.87 0.17 🔻 Machine: AMACHINENAMEHERE Mold: MOLDNAME Part #: Material: Previous Cycle Timestamp: 2018-10-25 14:02:33

Tableau de Bord (suite)

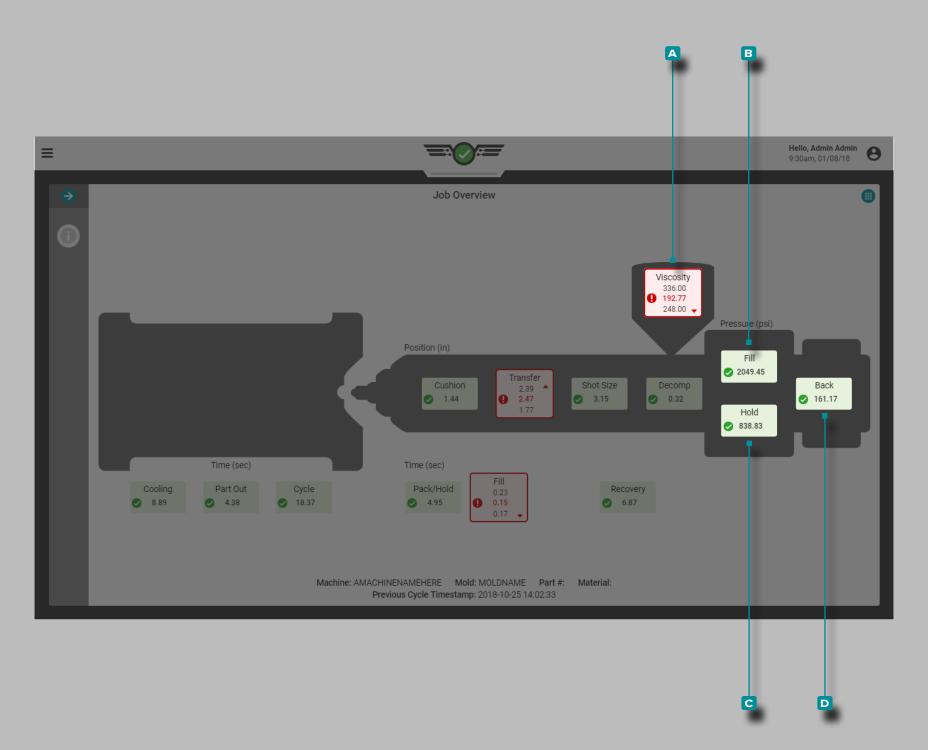
Valeurs de Process (suite)

Fois

Les temps incluent le A refroidissement, la B pièce éjectée, le C cycle, le C compactage / maintien, le F remplissage et le F dosage.

Reportez-vous au «Glossaire» on page 186 pour des définitions et des informations supplémentaires sur les minuteries.

Hello, Admin Admin Job Overview 336.00 192.77 248.00 🔻 Pressure (psi) Position (in) 2049.45 Back Cushion Shot Size Decomp 2.39 1 2.47 1.44 3.15 0.32 161.17 Hold 838.83 Time (sec) Time (sec) Cooling Part Out Cycle Pack/Hold Recovery 4.95 **Q** 0.15 8.89 4.38 2 18.37 6.87 0.17 Machine: AMACHINENAMEHERE Mold: MOLDNAME Part #: Material: Previous Cycle Timestamp: 2018-10-25 14:02:33


Tableau de Bord (suite)

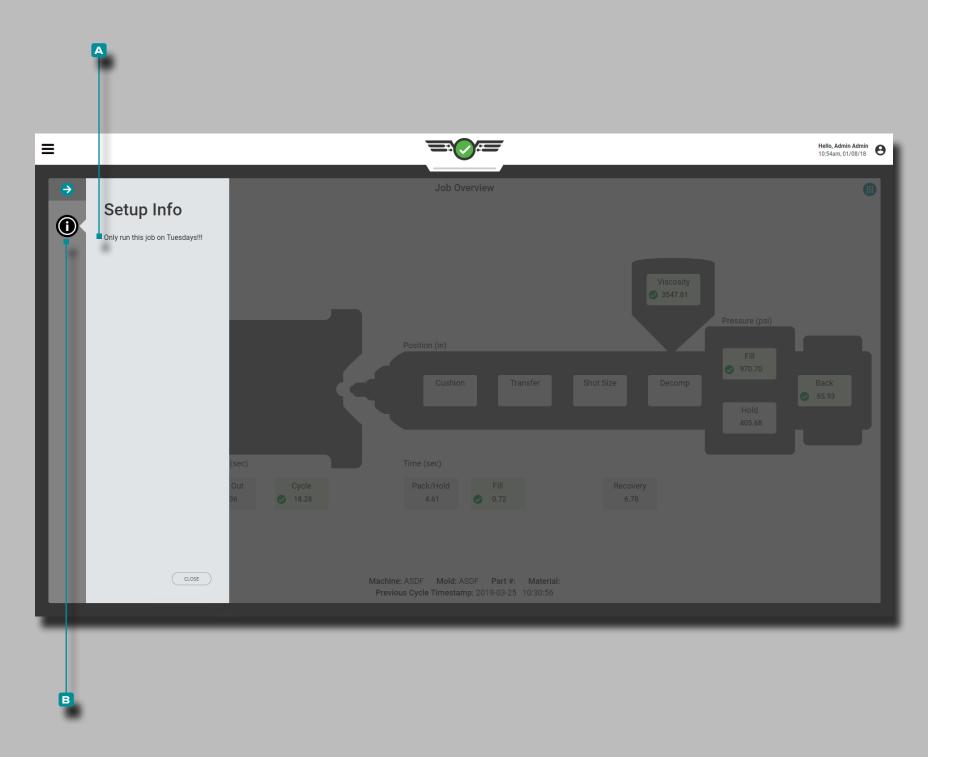
Valeurs de Process (suite)

Positions

Les positions comprennent le A matelas, le B point de commutation, le C volume injectée et la D décompression.

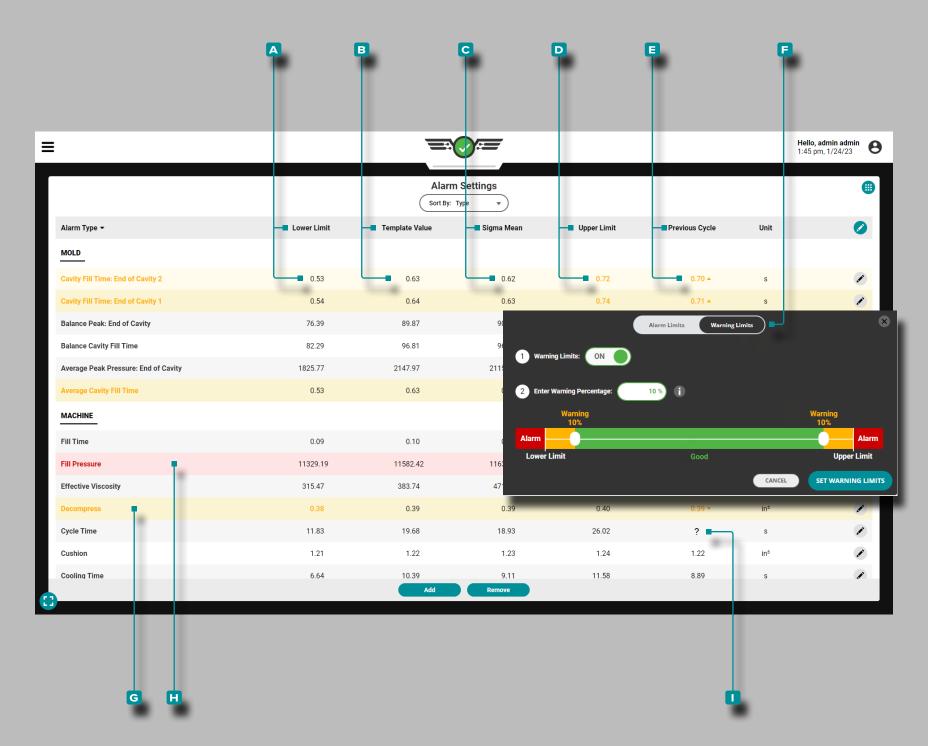
Reportez-vous au «Glossaire» on page 186 pour des définitions et des informations supplémentaires sur les positions.

Valeurs de Process (suite)


La Viscosité

La viscosité A est incluse dans l'écran Aperçu des tâches de process. Reportez-vous au «Glossaire» on page 186 pour plus d'informations sur la viscosité.

DEFINITION VISCOSITÉ Les fluctuations de viscosité du matériau indiquent des changements du taux de remplissage, du matériau entrant et de la température.


Pressions

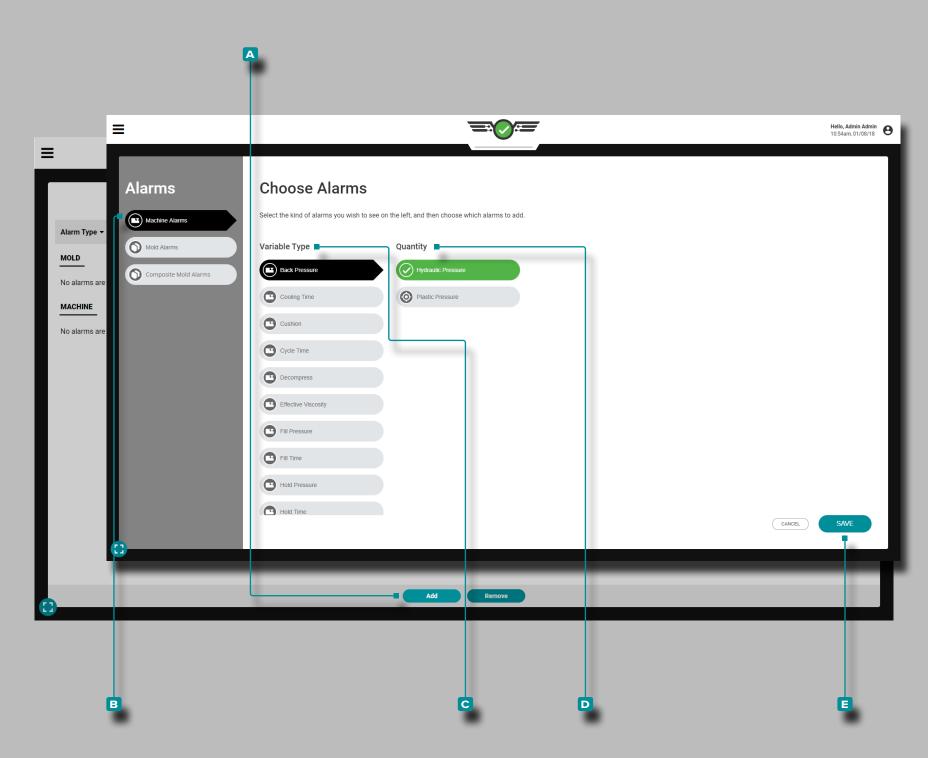
Les pressions comprennent le B remplissage, le C maintien et la D contre-pression. Reportez-vous au «Glossaire» on page 186 pour des définitions et des informations supplémentaires sur les pressions.

Informations de configuration

Les informations de configuration A peuvent être saisies pendant la configuration du processus pour être utilisées comme ressource d'opérateur. Appuyez sur le bouton B Informations de configuration sur l'écran Aperçu de la tâche pour afficher les informations de configuration du processus si elles ont été saisies lors de la configuration.

Paramètres d'Alarme

Le widget Paramètres d'alarme permet de sélectionner et de définir des alarmes de processus et des limites d'avertissement pour les valeurs de la machine et du moule. Les paramètres d'alarme incluent une A limite inférieure, B une valeur de modèle, C une moyenne sigma, une D limite supérieure et une valeur de E cycle précédent pour chaque valeur de processus surveillée; les limites doivent être basées sur des valeurs de processus éprouvées et stables. Les limites d'alarme peuvent être définies manuellement, en pourcentage ou à l'aide de sigma.

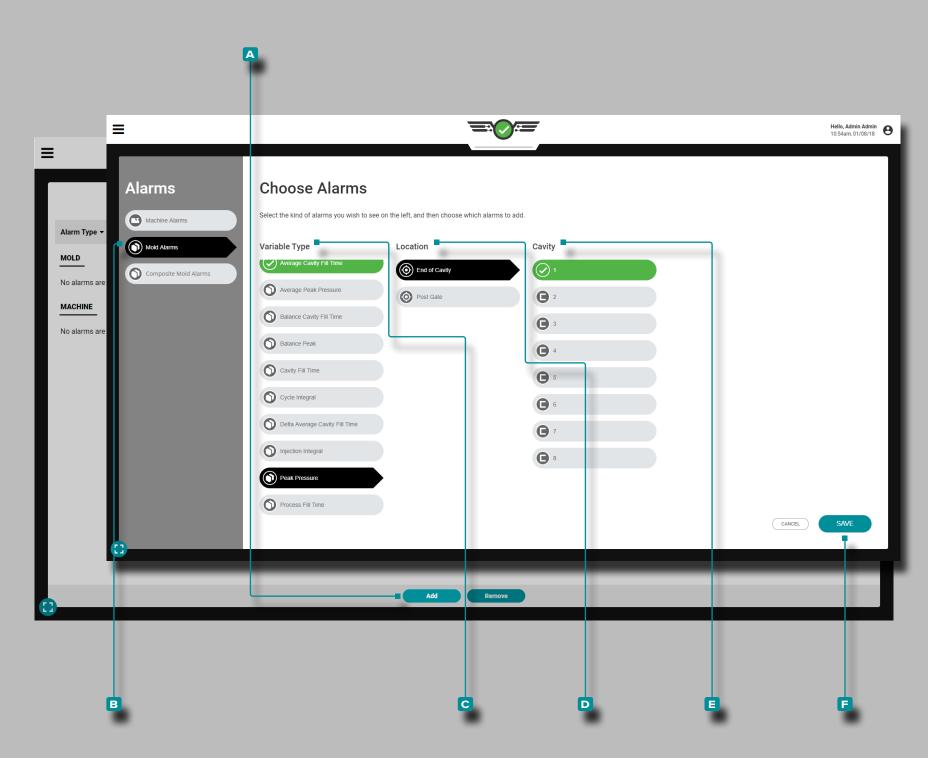

Les paramètres des limites d'avertissement incluent une valeur de pourcentage de limite d'avertissement réglable above/below l'alarme inférieure réglée limit/upper limite d'alarme. Définissez toujours les limites d'alarme avant de définir les limites d'avertissement.

Si un Le TCU est connecté et sélectionné dans les paramètres du processus, les alarmes de moule pour les températures minimales, moyennes et maximales du processus au processus, et les points de consigne du processus peuvent être définis et visualisés pour le TCU directement à partir du widget Paramètres d'alarmes. Les données peuvent également être représentées graphiquement sur le graphique de cycle.

(i) **REMARQUE** Reportez-vous à la Guide de l'utilisateur du logiciel Hub "Choix des paramètres d'alarme avec le système CoPilot et le logiciel Hub" a pagina pour plus d'informations sur le choix des paramètres d'alarme.

Les G valeurs de procédé affichéesen état d'avertissement seront surlignées en jaune, tandis que les H valeurs de procédé affichéesen état d'alarme seront surlignées en rouge.

Si le système CoPilot ne peut pas calculer une ou plusieurs valeurs de machine ou de moule de cycle précédent, un point d'interrogation (?) s'affiche dans la colonne de valeur du cycle précédent pour cette valeur.


Sélection d'Alarme

Ajoutez des alarmes au widget Paramètres d'alarme ; après avoir ajouté des alarmes, définissez des limites d'alarme.

Ajouter des Alarmes Machine

Les alarmes de la machine sont calculées à partir des données des capteurs d'interface machine en fonction des minuteries, des positions, des pressions et de la viscosité du matériau (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur les minuteries, les positions, les pressions et la viscosité du matériau).

Appuyez sur le bouton A AJOUTER sur le widget Paramètres d'alarme, puis appuyez pour sélectionner Alarmes machine; touchez pour sélectionner ou désélectionner une variable machine, puis touchez pour sélectionner la quantité désirée (machine ou normalisée), puis touche z pour sélectionner le bouton E ENREGISTRER lorsque vous avez terminé. La variable et la quantité sélectionnées seront affichées dans le format correspondant sur le moniteur; reportez-vous à»Normalisation des Valeurs de Processus» on page 151 pour plus d'informations sur la machine par rapport aux valeurs normalisées.

Sélection d'Alarme (suite)

Ajouter des Alarmes de Moule

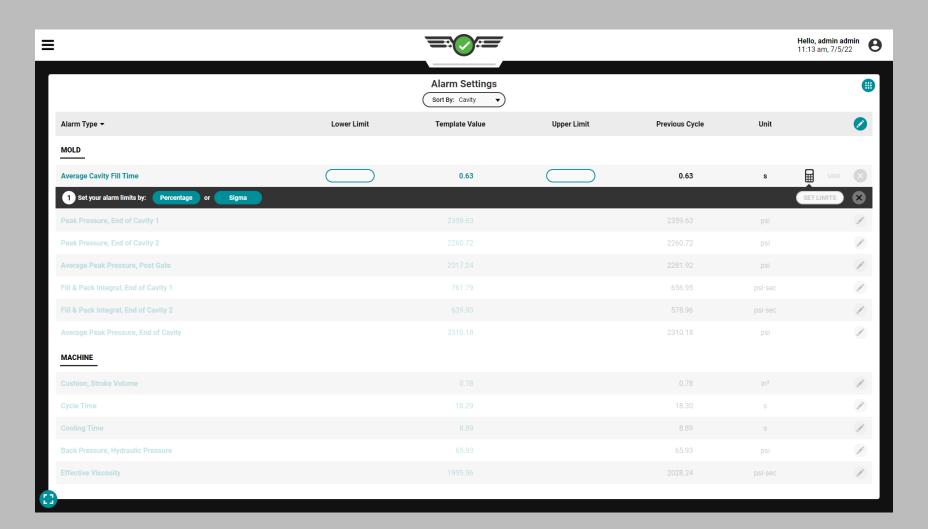
Les alarmes de moule *ne peuvent être configurées* que si des capteurs sont présents. Les alarmes de moule sont calculées à partir des données du capteur de pression de cavité, de température et de déformation du moule en fonction des intégrales, des pics ou des temps (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur les intégrales, les pics et les temps) ; données du capteur de température et données TCU.

Les alarmes de moule peuvent être définies pour la pression empreinte ou la température. Si un capteur est connecté mais pas configuré, il n'apparaîtra pas dans la liste des emplacements d'alarmes.

Appuyez sur le bouton A ① AJOUTER sur le widget Paramètres d'alarme, puis appuyez sur sélectionner B Alarmes de moule; appuyez pour sélectionner ou désélectionner un type de variable de moule, un pemplacement et une cavité; le cas échéant, appuyez pour sélectionner l'ID du capteur. Appuyez sur le bouton F ENREGISTRER lorsque vous avez terminé.

- (i) REMARQUE Le cas échéant, plusieurs cavités peuvent être sélectionnées pour chaque alarme ; sélectionnez une cavité, puis sélectionnez l'ID de capteur pour cette cavité et répétez jusqu'à ce que toutes les cavités souhaitées et l'ID de capteur associé soient sélectionnés, puis sélectionnez TERMINÉ.
- (i) **REMARQUE** Si un capteur précédemment assigné avec des configurations d'alarme est déconnecté, l'alarme ne sera pas automatiquement supprimée, mais ne fonctionnera pas non plus; connectez et attribuez le capteur ou désélectionnez l'alarme pour continuer.

\equiv \equiv **Choose Alarms** Alarms Select the kind of alarms you wish to see on the left, and then choose which alarms to add Machine Alarms Alarm Type ▼ Mold Alarms Variable Type MOLD SELECT ALL Cavity Fill Time End of Cavity Composite Mold Alarms No alarms a Average Post Gate Cycle Integral MACHINE ☐ High Fill & Pack Integral No alarms are **L**ow Fill & Pack Time Range 1 Injection Integral Peak Pressure CANCEL


Tableau de Bord (suite)

Sélection d'Alarme (suite)

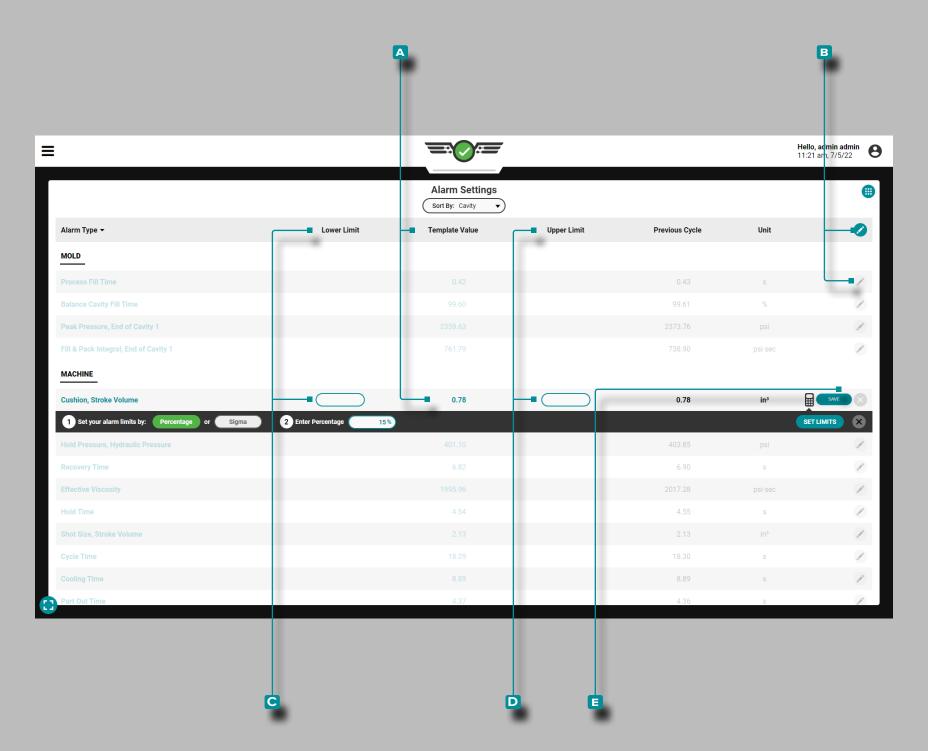
Ajouter des alarmes de moule composite

Les alarmes de moule composite sont des alarmes qui utilisent des données de capteur composite haute, basse, moyenne ou de plage de variable récapitulative. Les alarmes de moule composite permettent de définir une seule alarme pour une variable récapitulative à l'aide de données de capteur composite au lieu de définir plusieurs alarmes pour plusieurs capteurs. Les alarmes de moule composite peuvent être configurées pour le temps de remplissage de la cavité, le cycle intégral, le remplissage & Pack Intégral, Remplissage & Variables récapitulatives du temps de conditionnement, de l'intégrale d'injection et de la pression de pointe.

Appuyez sur Le bouton A Ajouter sur le widget Paramètres d'alarme, puis appuyez sur Le sélectionner B Composite Mold Alarms; appuyez Le pour sélectionner ou désélectionner un moule C Type de variable, D Emplacementet E ID (Moyenne, Élevée, Basse ou Plage). Appuyez Le sur le bouton F ENREGISTRER lorsque vous avez terminé.

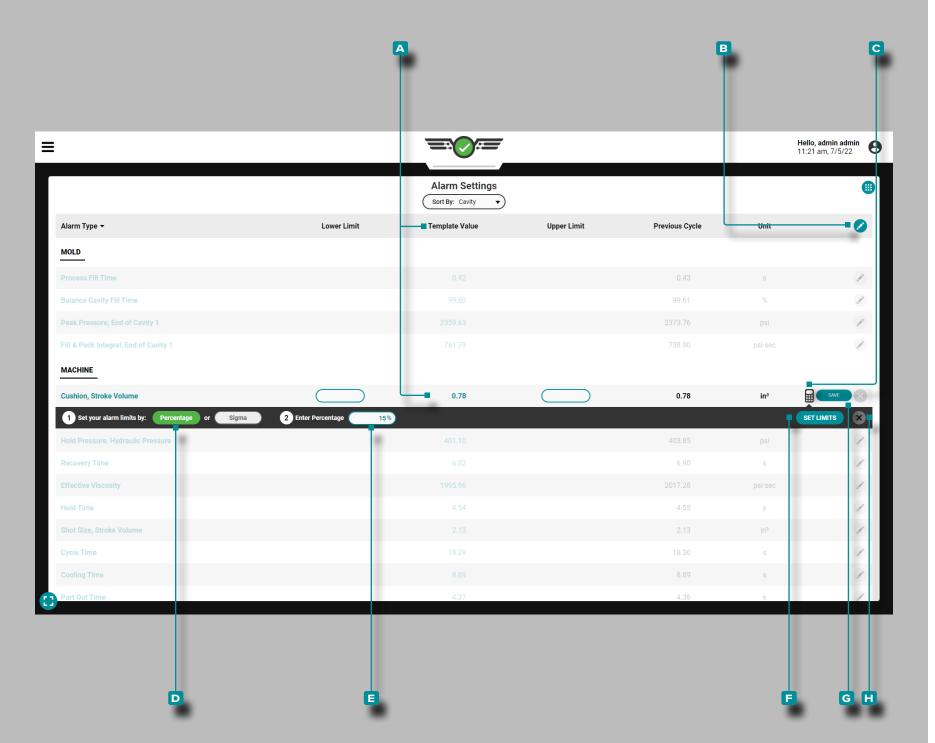
Réglage des Alarmes

Avec la machine de moulage par injection en mode automatique, exécutez le process jusqu'à ce qu'il se stabilise pour créer une courbe étalon à l'aide de données en temps réel; pour en savoir plus sur la création de modèles, reportez-vous à «Modèles de Processus de Graphe Cyclique» on page 80. Les limites d'alarme peuvent être définies de trois manières : manuellement, par pourcentage ou par sigma.


Quelle que soit la méthode de réglage de la limite d'alarme, la plupart des modifications s'appliqueront au cycle CURRENT. Les modifications de configuration suivantes seront appliquées au cycle suivant : niveaux d'alarme, ajustements des valeurs récapitulatives, seuil de remplissage de la pression de la cavité, seuil de détection de détection de transfert, temps de cycle standard, temps d'arrêt et pause.

DEFINITION SEUIL DE REMPLISSAGE DE LA PRESSION

DE LA CAVITÉ Ensemble de conditions de process qui doivent être présentes pendant un cycle pour que le système CoPilot calcule le remplissage de la cavité; les conditions comprennent le franchissement de ligne zéro, le franchissement de ligne zéro volume / pression d'injection et le temps de remplissage dans la cavité.

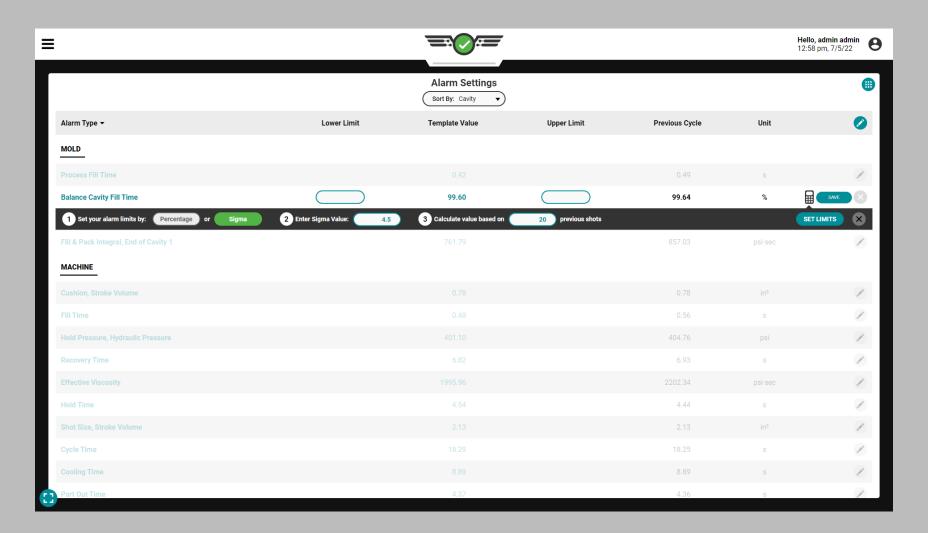

DEFINITION SEUIL DE DÉTECTION DE DÉCOUVERTE DE

TRANSFERT Un ensemble de conditions de processus qui doivent être présentes pendant un cycle pour que le système CoPilot calcule la commutation ; les conditions incluent le signal de séquence avant d'injection et le signal de déplacement de la vis, le signal de course / vitesse.

Réglage Manuel des Limites d'Alarme

Une fois qu'un modèle est chargé et A les valeurs du modèle sont renseignées, appuyez sur le modifier l'icône sur l'entête du tableau pour modifier toutes les alarmes, OU Appuyez ur l'icône de modification à côté d'une valeur de processus individuelle pour modifier cette valeur. Tapez ur les champs souhaités pour entrer une climite inférieure et une limite supérieure pour chaque valeur de processus; appuyez sur le bouton SAVE pour définir des limites.

Réglage des Limites d'Alarme par Pourcentage


Les limites d'alarme peuvent être définies par pourcentage collectivement ou individuellement.

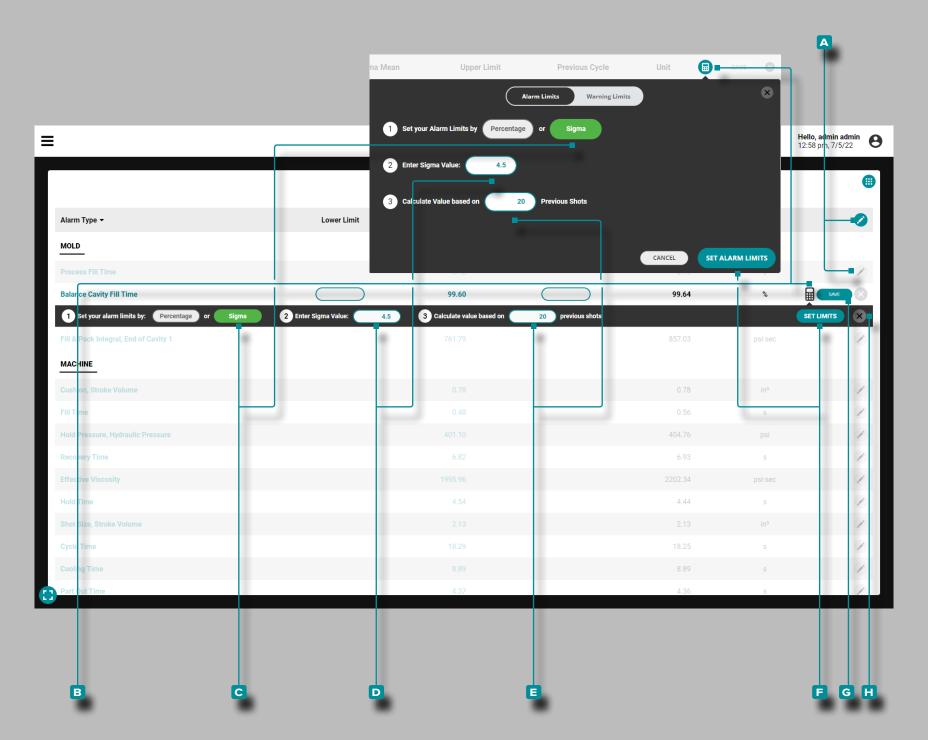
1. Définir les limites d'une alarme par pourcentage

Une fois qu'un modèle est chargé et A les valeurs du modèle sont renseignées, appuyez sur le B Modifier l'icône à côté de l'alarme souhaitée. Appuyez sur le C calculatrice, puis appuyez sur le bouton D de pourcentage. Si vous le souhaitez, appuyez sur le champ pour le saisir un E pourcentage par défaut différent. Appuyez sur le bouton Définir les E limites pour remplir automatiquement les limites inférieure et supérieure à l'aide d'un calcul en pourcentage de la valeur cible. Le pourcentage par défaut est de 15 %. Appuyez sur le bouton G ENREGISTRER pour enregistrer les valeurs, ou appuyez sur le bouton H Annuler pour annuler les modifications.

2. Définir Toutes les Limites d'Alarmes par Pourcentage

Une fois qu'un modèle est chargé et A les valeurs du modèle sont renseignées, appuyez sur le B modifier l'icône sur l'entête du tableau pour modifier toutes les alarmes. Appuyez sur la calculatrice, puis appuyez sur le bouton de pourcentage. Si vous le souhaitez, appuyez sur le champ pour saisir un pourcentage par défaut différent. Appuyez sur le bouton definites inférieure et supérieure à l'aide d'un calcul en pourcentage de la valeur cible. Le pourcentage par défaut est de 15 %. Appuyez sur le bouton ce enregistrer les valeurs, ou appuyez sur le bouton hanuler pour annuler les modifications.

Réglage des alarmes à l'aide de Sigma

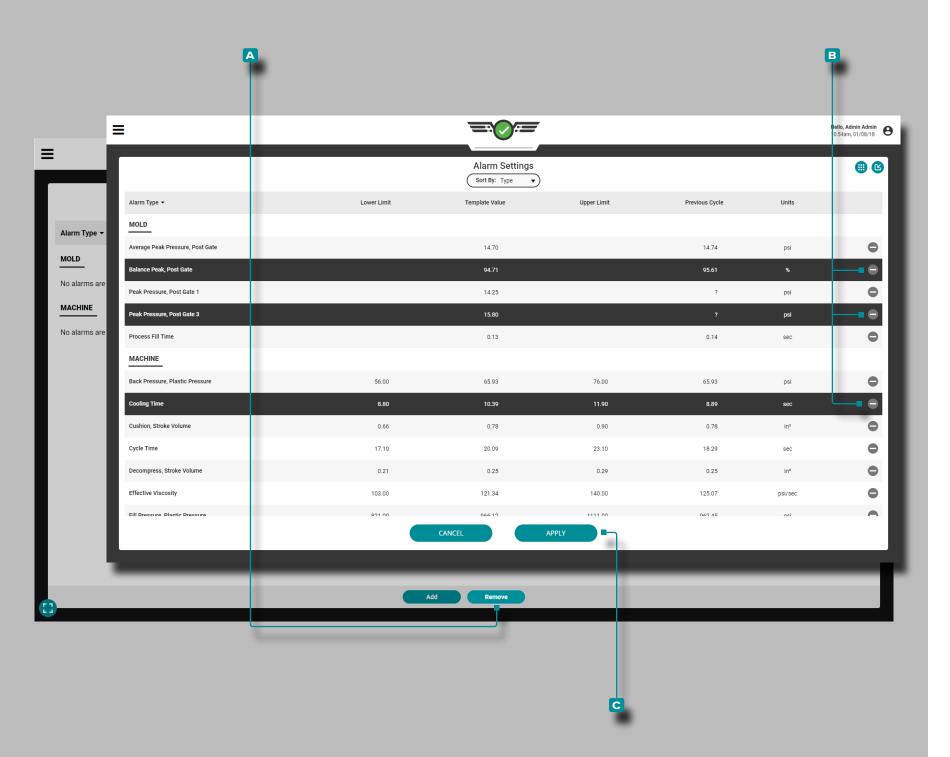

Sigma, la lettre grecque σ ou s minuscule, est le symbole utilisé pour représenter l'écart type ; un écart type – « sigma » – est une description de la distance entre un échantillon ou un point de données et sa moyenne (également appelée « moyenne »). Un point de données avec une valeur sigma plus élevée (écart-type plus élevé) est plus éloigné de la moyenne qu'un point de données avec une valeur sigma plus faible. Reportez-vous à X pour la formule de calcul sigma.

Le système CoPilot calcule la norme deviation/sigma valeur à partir du nombre saisi de prises de vue précédentes. Il multiplie ensuite la norme deviation/sigma par le nombre saisi, l'ajoute à la moyenne et définit le résultat comme alarme de niveau haut (« Limite supérieure »). Il soustrait la norme deviation/sigma de la moyenne, et la définit comme alarme de niveau bas ("Lower Limit").

Le nombre par défaut du système CoPilot de prises de vue précédentes (cycles) utilisé pour calculer la norme deviation/sigma est vingt, et le nombre par défaut de standards deviations/sigmas added/subtracted to/from la moyenne pour calculer les limites d'alarme est de $4,5\,\sigma$. Les cycles de rejet et d'arrêt ne sont pas exclus des calculs.

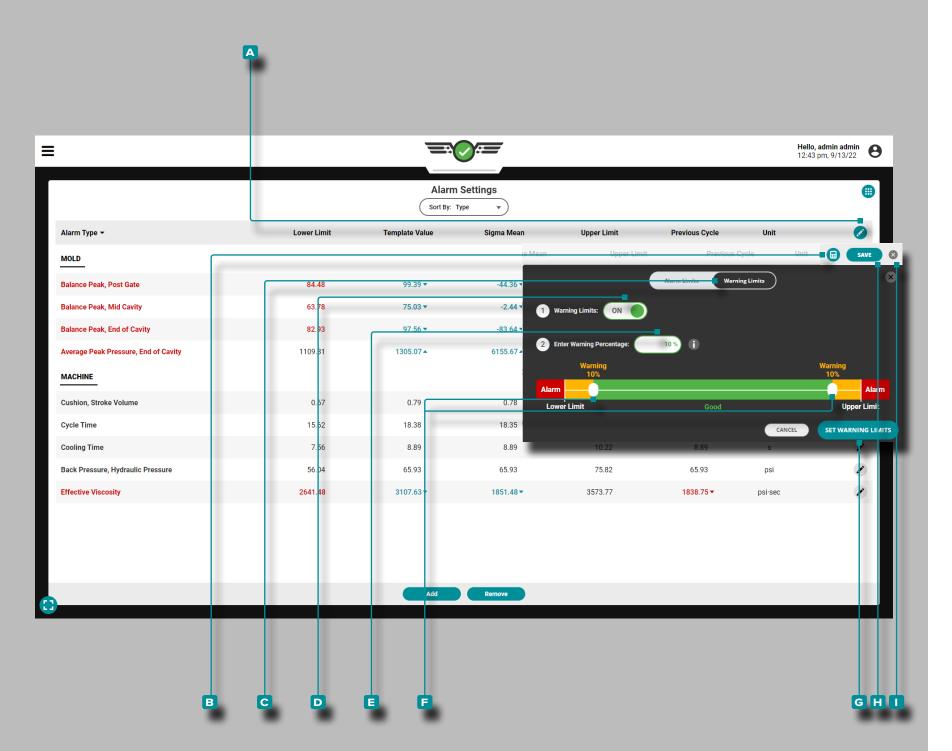
Le processus DOIT être stable pendant un minimum recommandé de vingt tirs avant d'ajouter des alarmes, bien que le plus petit nombre de tirs pouvant être entré soit dix. Si des valeurs de démarrage étaient utilisées pour calculer l'écart type, la variation rendrait les valeurs folles et inutiles.

Les niveaux d'alarme réglés sur sigma ne représentent aucune caractéristique spécifique de la pièce. Pour déterminer si une pièce est bonne ou mauvaise à une valeur spécifique, effectuez une étude de corrélation de pièce sur le logiciel The Hub.



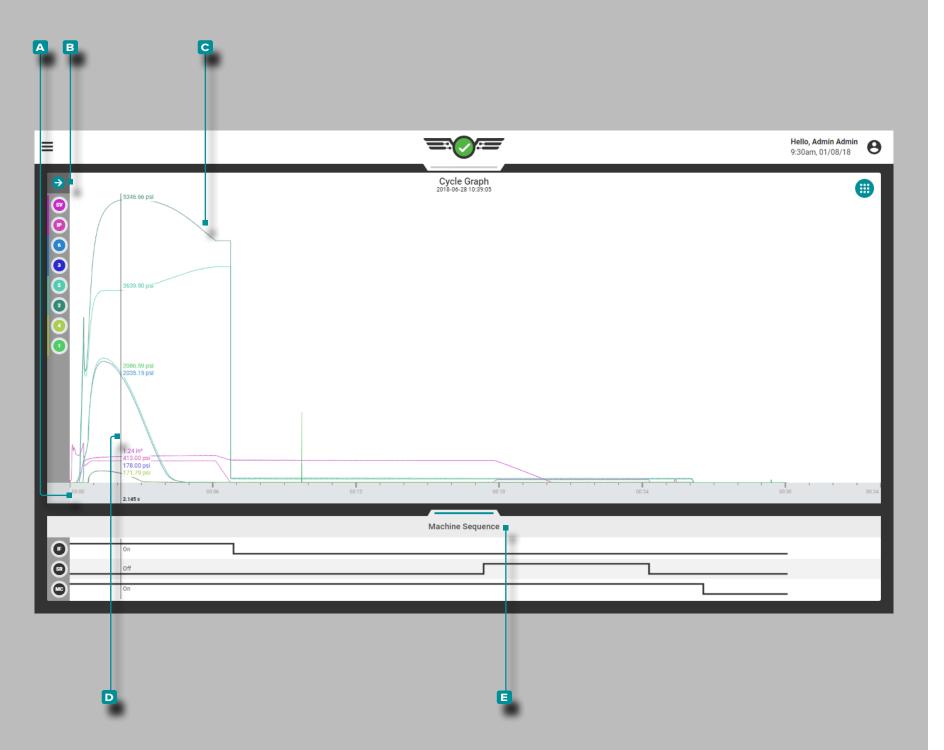
Réglage des Alarmes à l'Aide de Sigma (a continué)

Un modèle actif n'est pas nécessaire pour définir les alarmes à l'aide de sigma.


Appuyez sur le A modifier l'icône sur l'en-tête du tableau pour modifier toutes les alarmes, ou appuyez sur l'icône icône demodification à côté d'une valeur de processus individuelle pour modifier cette valeur. Appuyez sur la calculatrice, puis appuyez sur le bouton sigma. Si vous le souhaitez, appuyez sur le champ pour entrer une valeur sigma différente ou appuyez sur le champ pour entrer une valeur sigma différent de prises de vue précédentes à partir desquelles calculer les limites. Appuyez sur le bouton desquelles calculer les limites. Appuyez sur le bouton desquelles calculer les limites inférieure et supérieure à l'aide d'un calcul d'écart type. Appuyez sur le bouton centrer pour enregistrer les valeurs, ou appuyez sur le bouton centrer pour annuler les modifications.

Lorsque les alarmes sont définies à l'aide de sigma, une colonne "Sigma Mean" apparaît dans les paramètres d'alarme. La moyenne sigma est la somme des valeurs sigma calculées d'une variable récapitulative divisée par le nombre de valeurs sigma calculées pour la variable récapitulative.

Retirer une Alarme


Appuyez sur le bouton SUPPRIMER LES ALARMES sur le widget Paramètres d'alarme, puis appuyez sur une ou plusieurs alarmes pour sélectionner les alarmes à B supprimer; appuyez sur le bouton APPLIQUER pour supprimer les alarmes sélectionnées.

Limites d'Avertissement

Définition des Limites d'avertissement

Appuyez sur le la modifier l'icône sur l'en-tête du tableau, puis appuyez sur la la calculatrice. Appuyez sur le bouton c Limites d'avertissement. Si les limites d'avertissement sont désactivées, appuyez sur le bouton activé. Appuyez sur le champ pour saisir un pourcentage d'avertissement, ou appuyez sur le pourcentage d'avertissement, ou appuyez sur le pourcentage d'avertissement souhaité. Appuyez sur le bouton d'avertissement souhaité. Appuyez sur le bouton de DÉFINIR LES LIMITES d'avertissement pour enregistrer les paramètres des limites d'avertissement. Appuyez sur le bouton le ENREGISTRER sur l'en-tête du tableau pour enregistrer et appliquer les paramètres, ou appuyez sur le bouton de le sortie pour annuler toute modification des paramètres.

Graphe de Cycle

Courbes de Données de Cycle


Le graphique de cycle affiche les données de cycle sous forme de courbes en temps réel de la machine connectée et des capteurs de moule tels que la pression d'empreinte, le volume et la vitesse d'injection et les pressions d'empreinte ; le graphique de cycle affiche en outre les états des signaux de séquence de la machine (signal activé ou désactivé) dans une zone distincte sous le graphique des courbes.

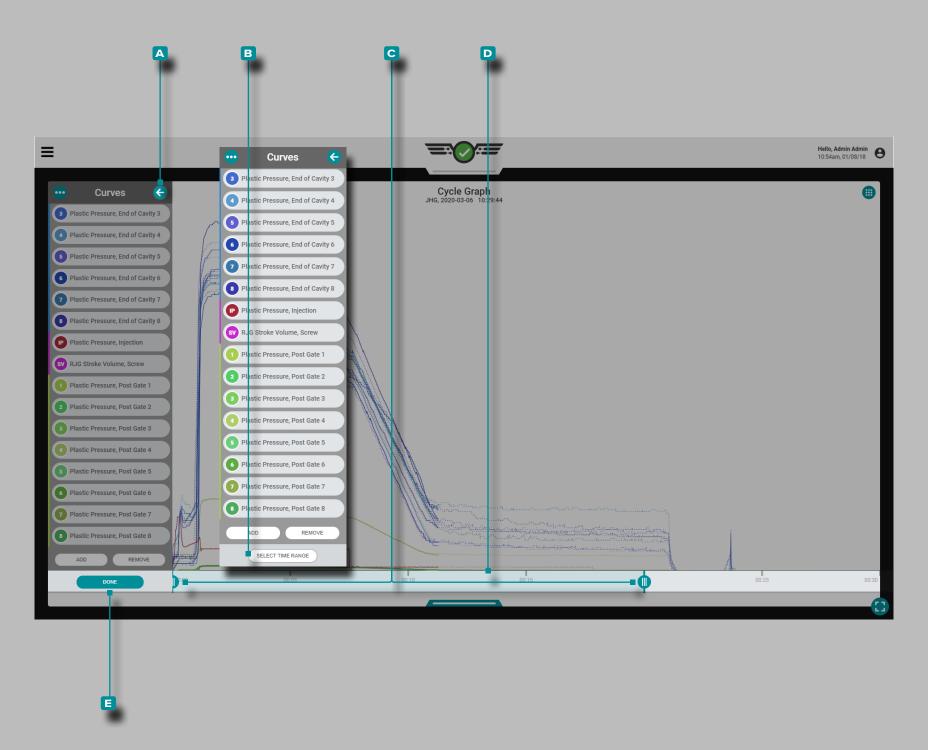
A L'axe des x indique le temps; B l'axe des y indique la valeur de processus (pression, volume, vitesse, etc.), par conséquent, les C courbes de cycle fournissent une représentation visuelle des valeurs de processus sur la durée d'un cycle. Appuyez det maintenez sur le graphique du cycle pour révéler le D curseur; le D curseur affiche les valeurs de la courbe des données de cycle. Faites glisser le D curseur ← vers la gauche et vers la droite → pour afficher les valeurs sur toute la courbe de données du cycle.

États de Séquence de la Machine

Le graphique des états de séquence machine affiche l'état actuel de chaque signal de séquence machine affecté. Si un signal de séquence est activé, la ligne correspondante apparaîtra dans la moitié supérieure de la zone de ce signal de séquence (haut); si un signal de séquence est désactivé, la ligne correspondante apparaîtra dans la moitié inférieure de la zone de ce signal de séquence (bas).

Les états de séquence de la machine sont particulièrement utiles pour analyser les courbes de données de cycle. Les courbes de données de cycle doivent suivre des chemins prévisibles au cours d'un cycle; référencer les états de séquence de la machine par rapport aux courbes de données de cycle pour vérifier que le processus fonctionne comme prévu tout au long des cycles.

Commandes du Graphique de Cycle


Il grafico del ciclo può visualizzare le curve dei dati del ciclo della macchina e dello stampo; il numero effettivo di curve dei dati di ciclo disponibili dipende dall'attrezzatura (macchina e stampo) installata.

Ajouter des Courbes

Toccare ♣ il pulsante ♠ freccia per espandere e visualizzare il menu della curva dei dati del ciclo, quindi toccare ♣ il pulsante ➡ AGGIUNGI per visualizzare le curve dei dati del ciclo della macchina, dello stampo o dello stampo composito selezionabili; toccare ♣ il C tipo di curva dei dati del ciclo desiderato, quindi toccare ♣ il pulsante ▶ FATTO per tornare al grafico del ciclo.

Supprimer les Courbes

Appuyez sur le bouton A fléché pour développer et afficher le menu des courbes de données de cycle, puis appuyez sur le bouton E SUPPRIMER pour activer les courbes de données de cycle actuelles à supprimer; appuyez sur la E courbe de données de cycle souhaitée, puis appuyez sur le bouton APPLIQUER pour la supprimer du graphique.

Commandes du Graphique de Cycle (suite)

Agrandir

Appuyez sur le bouton A fléché pour développer et afficher le menu des courbes de données de cycle, puis appuyez sur le bouton SÉLECTIONNER LA PLAGE DE TEMPS pour zoomer sur une sélection de temps du graphique de cycle. Appuyez naintenez et faites glisser l'un des curseurs ou les deux jusqu'à l'heure sélectionnée.

Appuyez , maintenez et faites glisser la barre de sélection de temps pour faire un panoramique à gauche ou à droite sur le graphique cyclique. Appuyez sur le bouton E TERMINÉ pour appliquer les modifications.

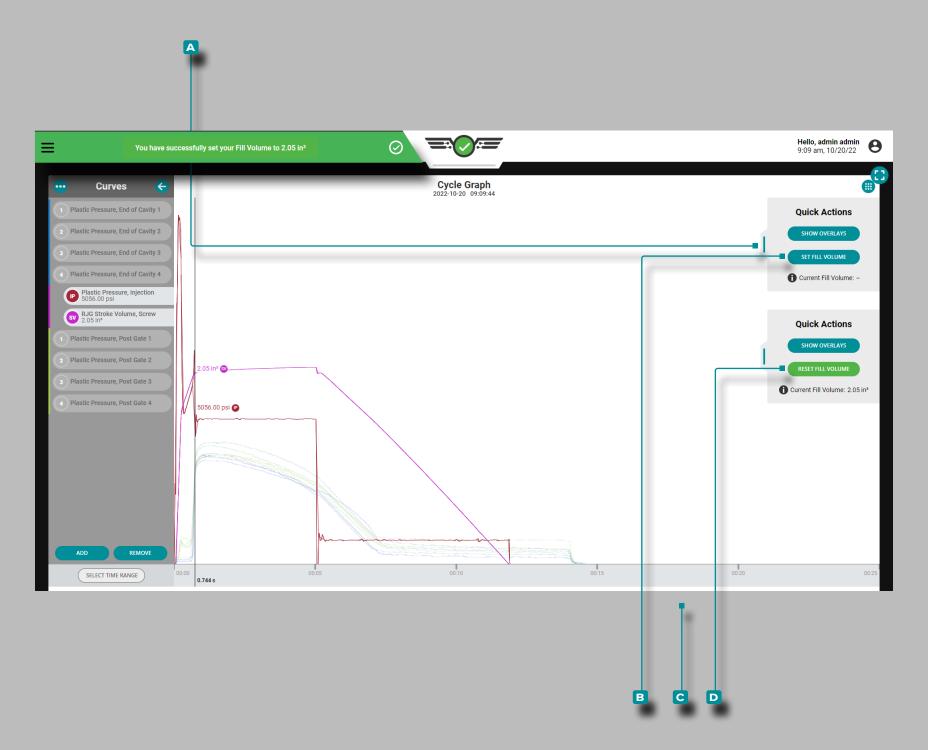
Agrandir

Appuyez sur le bouton B SÉLECTIONNER LA PLAGE DE TEMPS pour zoomer sur une sélection de temps du graphique du cycle, puis appuyez s, maintenez et faites glisser l'un ou les deux curseurs vers l'heure sélectionnée. Appuyez sur le bouton E TERMINÉ pour appliquer les modifications.

Panoramique

Appuyez 4, maintenez et faites glisser sur le graphique du cycle pour faire un panoramique à gauche ou à droite à tout moment.

Régler le volume de remplissage au curseur


Dans les processus découplés, la phase de remplissage (vitesse) est séparée de la phase d'emballage (pression), par conséquent, les processus DÉCOUPLÉS II et DÉCOUPLÉS III nécessitent le signal de séquence de la machine «remplir». La plupart des machines ne produisent pas le signal de remplissage, de sorte que le signal peut être généré en utilisant la position zéro de la vis et une position de volume de remplissage définie.

Pour utiliser la fonction Définir le volume de remplissage au curseur, il doit y avoir les éléments suivants:

 une entrée de course de machine configurée, provenant d'un LE-R-50 ou d'un IA1-M-V configuré pour la course (voir «Position / Vitesse de Course (Machines Electriques)» on page 14 OU «Position / Vitesse de Course (Machines Hydrauliques)» on page 15)

ET

 une entrée de pression d'injection de machine configurée provenant d'un capteur de pression d'injection ou d'un IA1-M-V configuré pour la pression d'injection (voir «Pression d'Injection (Machines Electriques)» on page 16 OU «Pression d'Injection (Machines Hydrauliques)» on page 17).

Régler le volume de remplissage au curseur (suite)

Pour régler le volume de remplissage à l'aide du curseur, procédez comme suit:

- 1. Démarrez le travail dans le logiciel CoPilot avec la machine de moulage fonctionnant en mode automatique.
- 2. Accédez au tableau de bord des travaux, puis développez le graphique de cycle en plein écran. Les courbes «pression d'injection» et «volume d'injection» doivent être visibles. Une fois que plusieurs cycles «normaux» sont observés, examinez les courbes de pression d'injection et de volume d'injection pour «la fin du remplissage rapide» généralement représenté comme un pic local dans la courbe de pression d'injection ou un changement soudain de la pente de la courbe de volume, où il se déplace de raide à peu profond. Cela se produit régulièrement au même moment.
- 3. Appuyez sur et maintenez sur le graphique; le curseur apparaîtra. Faites glisser le curseur juste avant la fin du remplissage rapide. Appuyez sur, maintenezenfoncé et faites glisser le curseur du menu Cycle Graph Quick Actions vers la gauche. Appuyez sur le bouton BRÉGLER LE VOLUME DE REMPLISSAGE pour régler la position du volume de remplissage à l'emplacement sélectionné sur le graphique du cycle. Une contification apparaîtra pour confirmer la position de volume de remplissage attribuée. La position de volume de remplissage sélectionnée sera enregistrée avec le processus et remplacera tous les autres signaux de la machine qui peuvent être attribués; la position du volume de remplissage persistera également jusqu'à ce qu'elle soit réinitialisée ou qu'une nouvelle position de volume de remplissage soit définie.

Pour réinitialiser la position du volume de remplissage, appuyez sur le bouton RÉINITIALISER LE VOLUME DE REMPLISSAGE dans le menu Actions rapides.

Pour remplacer une position de volume de remplissage sélectionnée, sélectionnez une nouvelle position, puis **appuyez sur** le bouton RÉGLER LE VOLUME DE REMPLISSAGE dans le menu Actions rapides .

Le temps de remplissage est calculé en fonction du volume de remplissage sélectionné à l'aide de la fonction Définir le volume de remplissage au curseur.

Cycle Graph PRESSION / DISTANCE / VOLUME Transfert -Pression d'injection de pointe Temps de réponse Machine Sequence Remplissage Emballer et tenir Retard Reprise **Temps**

Tableau de Bord (suite)

Courbes de Graphe de Cycle de Surveillance

Les courbes du graphique de cycle sont une indication visuelle de ce qui se passe à l'intérieur du moule et doivent donc être surveillées pour identifier les changements dans le processus.

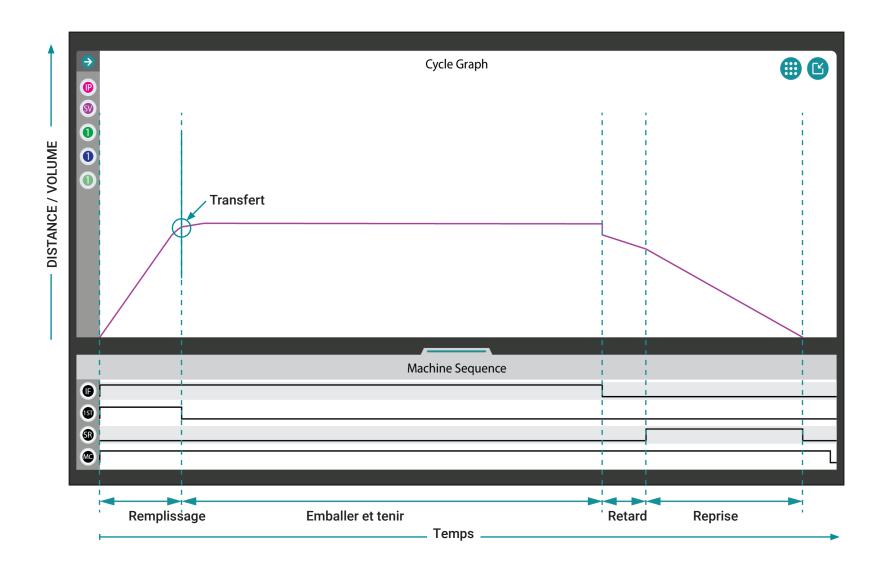
(i) **REMARQUE** Les courbes illustrées et décrites ci-dessous sont à titre informatif uniquement. Chaque processus est unique et les formes de courbe sont spécifiques au moule et s'écartent souvent considérablement des courbes idéales illustrées.

La courbe de pression d'injection montre les niveaux de pression pendant le cycle de moulage. La courbe du volume d'injection (ou course) montre le volume de matière déplacé par la vis dans le moule. Les courbes de pression dans la cavité montrent la pression du matériau détectée par les capteurs de pression dans la cavité pendant le cycle de moulage.

Les changements dans le processus (pression d'injection, volume d'injection et pression dans la cavité) sont facilement détectés en surveillant les courbes du graphique de cycle correspondantes. De plus, des changements dans les performances de la machine peuvent être détectés; par exemple, un pic dans la courbe du volume d'injection après la phase de remplissage indique souvent un problème potentiel avec le clapet anti-retour.

Courbe de Pression d'Injection

La courbe de pression d'injection est représentée sur le graphique du cycle en rose. La pression d'injection peut être surveillée pour détecter les changements dans la vitesse et le temps de remplissage, la pression du premier étage, la pression d'emballage et de maintien et la contre-pression (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur ces variables).

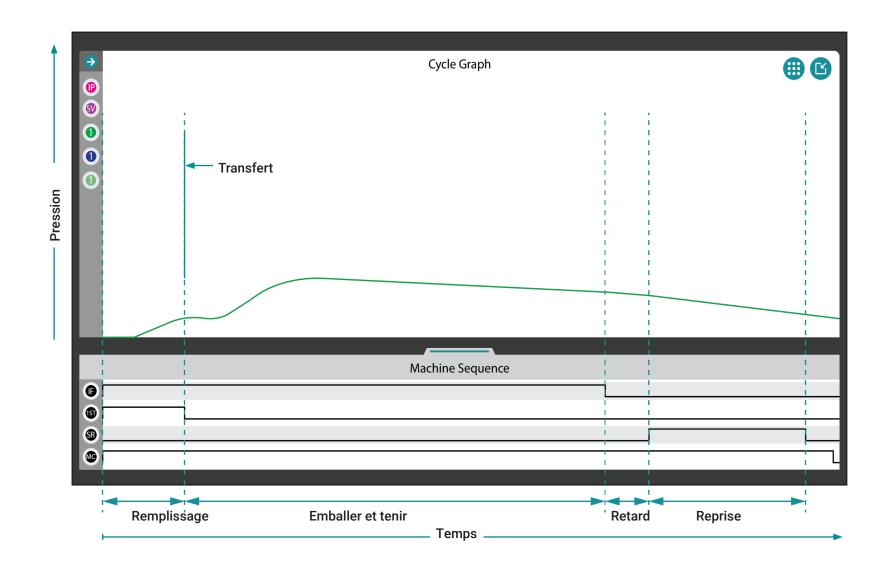

La courbe de pression d'injection doit avoir une forte pente à partir du début du cycle, ce qui montre la construction de la pression entre le début du cycle et la fin du temps de remplissage. Lorsque la pression d'injection de pointe est atteinte, la courbe est à son point le plus élevé sur le graphique du cycle et les éléments suivants sont également applicables:

- Le point auquel dans les applications de moulage découplé II et III les cavités du moule sont remplies à 95–98% / 85–90%.
- Point auquel le temps de remplissage se termine et est calculé, et le temps de conditionnement et de maintien commence.
- Le point connu sous le nom de position de transfert (X-fer, V →
 P) dans lequel la commande passe de la vitesse à la pression
 (maintien).

La courbe diminuera lorsque le transfert de la vitesse à la pression se produira. Bien que la courbe puisse à nouveau augmenter légèrement, elle se nivellera lorsque la pression est égalisée dans les cavités à la pression de maintien.

La courbe diminuera brusquement pour indiquer la fin du maintien; le temps de conditionnement et de maintien se termine et est calculé, et le temps de retard commence.

La pression augmentera alors légèrement lorsque le temps de retard se termine et est calculé, et la récupération de la vis commence (et le temps de récupération commence), jusqu'à ce qu'elle tombe sur l'axe des x, signalant la fin de la récupération et le temps de récupération est calculé. La contre-pression est calculée pendant le temps de récupération.

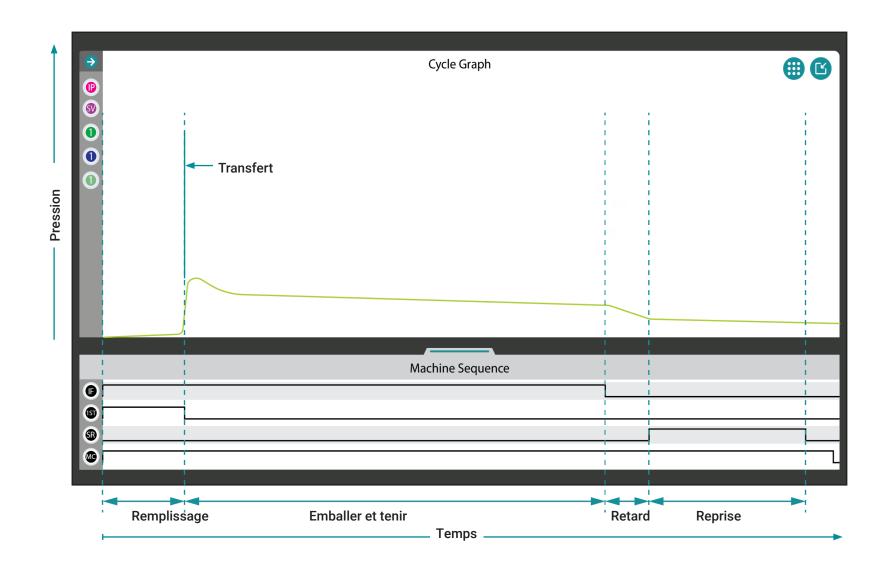

Course d'Injection / Courbe de Volume

La courbe course / volume d'injection est représentée sur le graphique du cycle en magenta. L'injection peut être surveillée sous forme de course (distance) ou de volume, et peut être utilisée pour détecter les changements de volume de remplissage (reportez-vous au»Glossaire» on page 186 pour plus d'informations sur le volume d'injection).

La courbe course / volume d'injection doit avoir une forte inclinaison au début du cycle, ce qui montre l'augmentation de la matière dans le moule entre le début du cycle et la fin du temps de remplissage. Lorsque les cavités du moule sont remplies à 95-98% / 85-90% (procédés de moulage découplé II et III), la position de transfert est atteinte et le contrôle passe de la vitesse à la pression (maintien) - également appelé X-fer, $V \rightarrow P$. Le point auquel également à ce moment, le temps de remplissage se termine et est calculé, et le temps de conditionnement et de maintien commence.

La courbe continuera à grimper, bien que de manière beaucoup plus graduelle, à mesure que le transfert de la vitesse à la pression se produira et que la pièce sera tassée. La courbe diminuera alors pour indiquer la fin du maintien; le temps de conditionnement et de maintien se termine et est calculé, et le temps de retard commence.

La courbe diminuera alors légèrement au fur et à mesure que la pièce refroidit et rétrécit, le temps de retard se termine et est calculé, et la récupération de la vis commence (et le temps de récupération commence). Lorsque la récupération se termine et que la pièce est éjectée, le temps de récupération est calculé. La contre-pression est calculée pendant le temps de récupération.

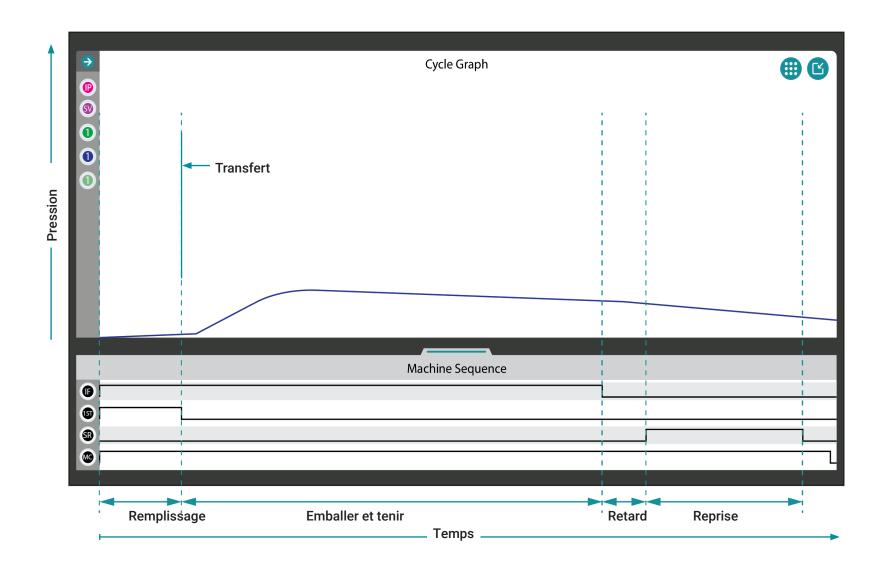

Courbes de Pression de la Cavité Après la Porte

La courbe de pression de la cavité PG est représentée sur le graphique du cycle en vert. La pression de la cavité post-grille peut être surveillée pour détecter les changements de débit de conditionnement, de vitesse de refroidissement, de pression de pointe et d'intégrale de cycle (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur ces variables).

La courbe de pression de la cavité PG doit être plate au début du cycle, puis monter lentement de l'heure de début du cycle à la fin du temps de remplissage, montrant l'augmentation de la matière dans le moule au-delà du capteur de l'heure de début du cycle à la fin du temps de remplissage . Lorsque les cavités du moule sont remplies à 95–98% / 85–90% (procédés de moulage découplé II et III), la position de transfert est atteinte et le contrôle passe de la vitesse à la pression (maintien) - également appelé X-fer, V \rightarrow P . Le point auquel également à ce moment, le temps de remplissage se termine et est calculé, et le temps de conditionnement et de maintien commence.

La courbe se nivellera puis continuera à monter au fur et à mesure que le transfert de la vitesse à la pression se produira. La courbe diminuera lentement après la deuxième montée pour indiquer le joint de la porte jusqu'à la fin de la cale; le temps de conditionnement et de maintien se termine et est calculé, et le temps de retard commence.

La courbe diminuera alors légèrement plus que pendant le conditionnement et le maintien à mesure que la pièce refroidit et rétrécit, le temps de retard se termine et est calculé, et la récupération de la vis commence (et le temps de récupération commence). Lorsque la récupération se termine et que la pièce est éjectée, le temps de récupération est calculé. La contre-pression est calculée pendant le temps de récupération.

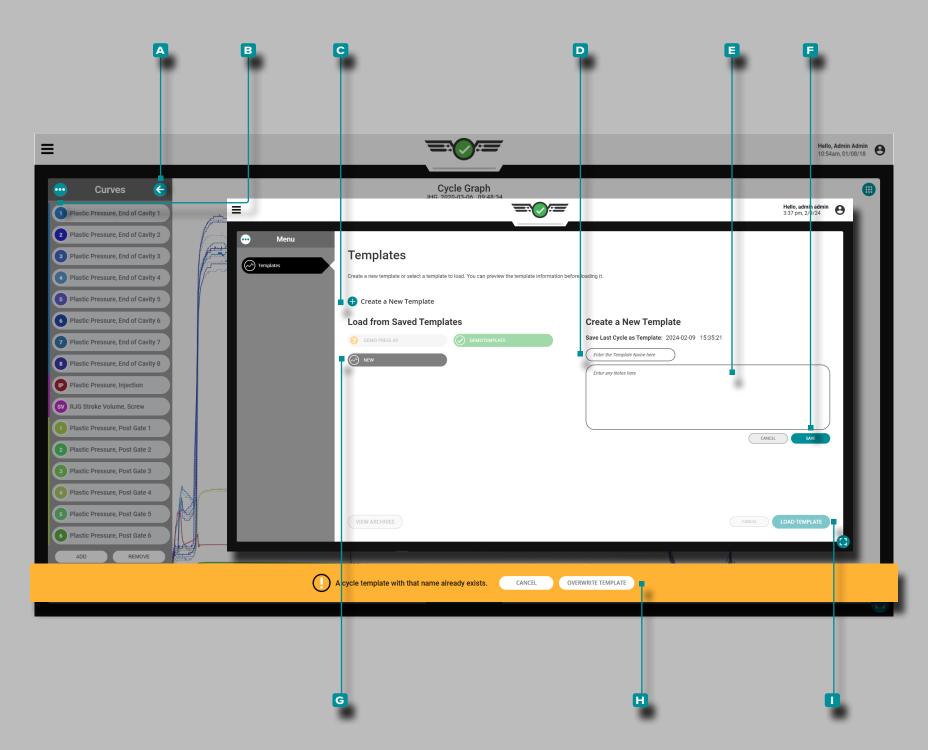

Courbes de Pression à Mi-Cavité

La courbe de pression MID est représentée sur le graphique du cycle en vert lime. La pression au milieu de la cavité peut être surveillée pour détecter les changements dans le taux de remplissage, la vitesse de refroidissement, la pression de pointe et l'intégrale du cycle (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur ces variables).

La courbe de pression MID doit être relativement plate au début du cycle à partir de l'heure de début du cycle et monter rapidement jusqu'à la fin du temps de remplissage. Lorsque les cavités du moule sont remplies à 95–98% / 85–90% (procédés de moulage découplé II et III), la position de transfert est atteinte et le contrôle passe de la vitesse à la pression (maintien) - également appelé X-fer, V \rightarrow P . Le point auquel également à ce moment, le temps de remplissage se termine et est calculé, et le temps de conditionnement et de maintien commence.

La courbe diminuera alors légèrement puis se nivellera lorsque le transfert de la vitesse à la pression se produit lorsque le matériau atteint et se comprime contre l'extrémité des cavités. La courbe diminuera ensuite lentement pour indiquer le joint de la porte jusqu'à la fin de la cale; le temps de conditionnement et de maintien se termine et est calculé, et le temps de retard commence.

La courbe continuera à baisser légèrement plus que pendant le compactage et le maintien à mesure que la pièce refroidit et rétrécit, le temps de retard se termine et est calculé, et la récupération de la vis commence (et le temps de récupération commence). Lorsque la récupération se termine et que la pièce est éjectée, le temps de récupération est calculé. La contre-pression est calculée pendant le temps de récupération.


Courbes de Pression de Fin de Cavité

La courbe de pression EOC est représentée sur le graphique du cycle en bleu. La pression de fin de cavité peut être surveillée pour détecter les changements dans la vitesse de remplissage, la vitesse de refroidissement, la pression de pointe et l'intégrale du cycle (reportez-vous au «Glossaire» on page 186 pour plus d'informations sur ces variables).

La courbe de pression EOC doit être relativement plate au début du cycle entre l'heure de début du cycle et la fin du temps de remplissage. Lorsque les cavités du moule sont remplies à 95-98% / 85-90% (procédés de moulage découplé II et III), la position de transfert est atteinte et le contrôle passe de la vitesse à la pression (maintien) - également appelé X-fer, $V \rightarrow P$. Le point auquel également à ce moment, le temps de remplissage se termine et est calculé, et le temps de conditionnement et de maintien commence.

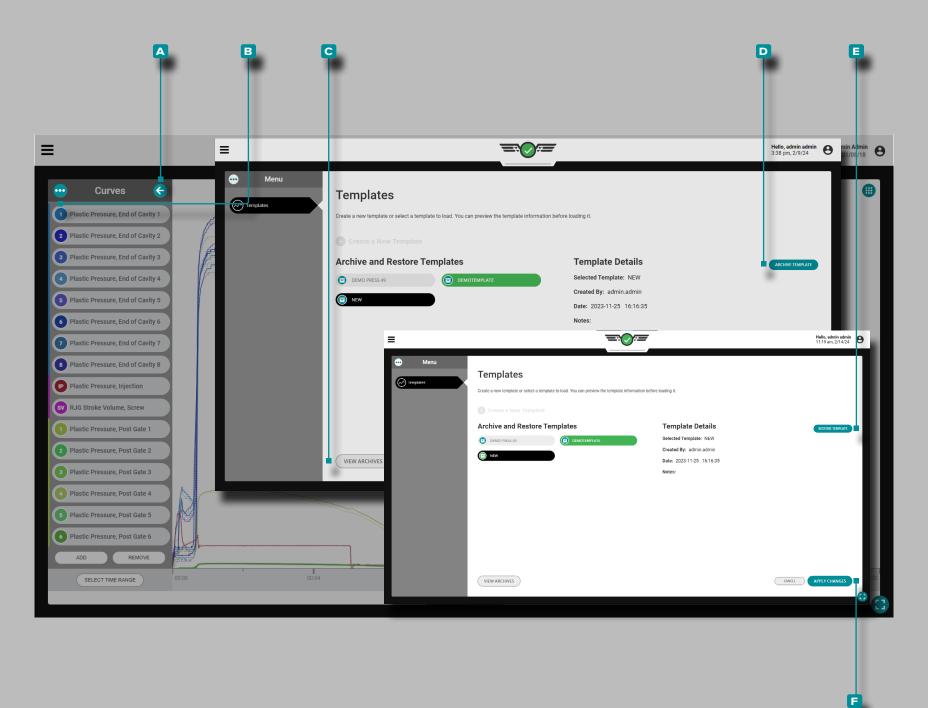
La courbe montera alors au fur et à mesure que le transfert de la vitesse à la pression se produit lorsque le matériau atteint et se comprime contre l'extrémité des cavités. La courbe diminuera ensuite lentement pour indiquer le joint de la porte jusqu'à la fin de la cale; le temps de conditionnement et de maintien se termine et est calculé, et le temps de retard commence.

La courbe continuera à baisser légèrement plus que pendant le compactage et le maintien à mesure que la pièce refroidit et rétrécit, le temps de retard se termine et est calculé, et la récupération de la vis commence (et le temps de récupération commence). Lorsque la récupération se termine et que la pièce est éjectée, le temps de récupération est calculé. La contre-pression est calculée pendant le temps de récupération.

Modèles de Processus de Graphe Cyclique

Les modèles de processus de graphe cyclique sont des modèles créés par l'utilisateur qui, s'ils correspondent, produisent des pièces les plus proches de celles créées par le processus à partir duquel le modèle a été créé. S'il est utilisé, le modèle est affiché sur le graphique de cycle avec les courbes de graphique de cycle en cours; le modèle est affiché sous forme de lignes pointillées. Les valeurs de modèle sont également appliquées au widget Paramètres d'alarme lorsqu'un modèle est sélectionné.

Créer un Modèle


Appuyez sur le bouton A fléché pour développer et afficher le menu de courbe de données de cycle, puis appuyez sur le bouton de menu pour afficher les modèles existants; appuyez sur le bouton C Créer un nouveau modèle, puis appuyez sur saisir un pouveau nom de modèle. Vous pouvez éventuellement saisir le des notes dans le champ prévu, puis appuyer sur le bouton F ENREGISTRER.

Si le modèle utilise le nom d'un modèle existant, appuyez sur le bouton H (1) ÉCRASER LE MODÈLE pour confirmer que le nouveau modèle écrasera le modèle existant.

(i) **REMARQUE** Un nouveau modèle peut être enregistré en utilisant un nom de modèle existant ; le nouveau modèle remplacera le modèle existant. Si un modèle est enregistré pour remplacer un modèle archivé, le modèle sera désarchivé et mis à jour avec les nouvelles valeurs du modèle.

Charger le Modèle

Appuyez sur le bouton A fléché pour développer et afficher le menu de courbe de données de cycle, puis appuyez sur le bouton de B menu pour afficher les modèles existants. Appuyez sur lu G modèle existant pour le sélectionner à utiliser, puis appuyez sur le bouton I CHARGER LE MODÈLE pour charger le modèle sélectionné.

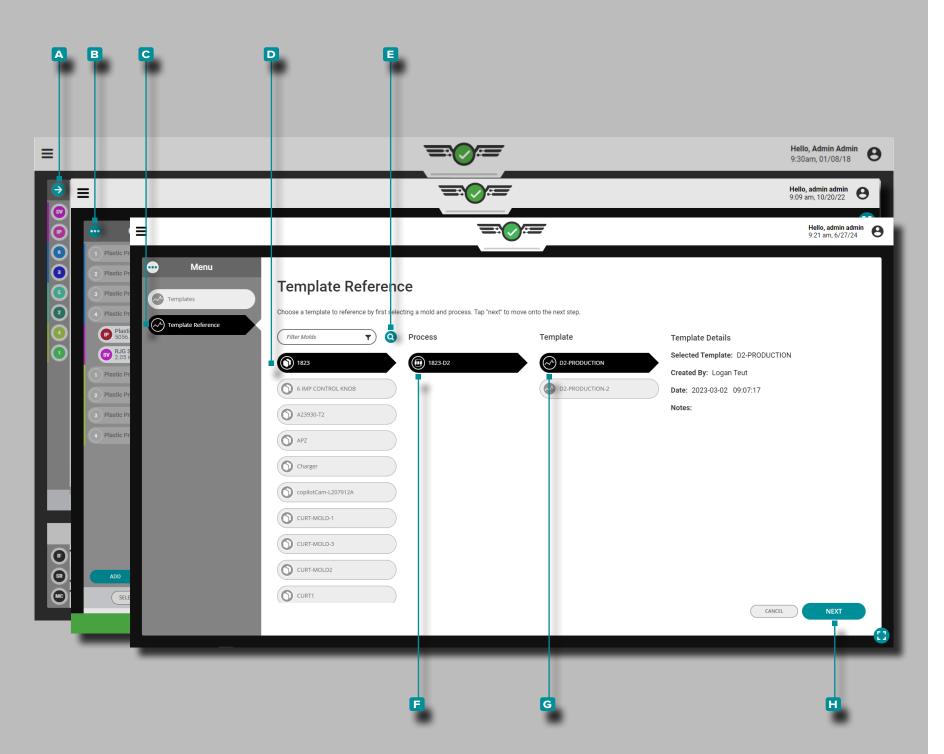
Archiver un Modèle

Appuyez sur le bouton A fléché pour développer et afficher le menu de courbe de données de cycle, puis appuyez sur le bouton de menu pour afficher les modèles existants. Appuyez sur le bouton C AFFICHER LES ARCHIVES, puis appuyez sur pour sélectionner le(s) modèle(s) à archiver. Appuyez sur le bouton ARCHIVE MODÈLE, puis appuyez sur le bouton APPLY CHANGES pour archiver le(s) modèle(s) sélectionné(s).

Restaurer un Modèle

Appuyez sur A le bouton fléché pour développer et afficher le menu de courbe de données de cycle, puis appuyez sur le bouton de menu pour afficher les modèles existants ; appuyez sur le bouton AFFICHER LES ARCHIVES, puis appuyez sur le(s) modèle(s) à restaurer, appuyez sur le bouton RESTORE ARCHIVE, puis appuyez sur le bouton APPLIQUER LES MODIFICATIONS pour restaurer le(s) modèle(s) sélectionné(s).

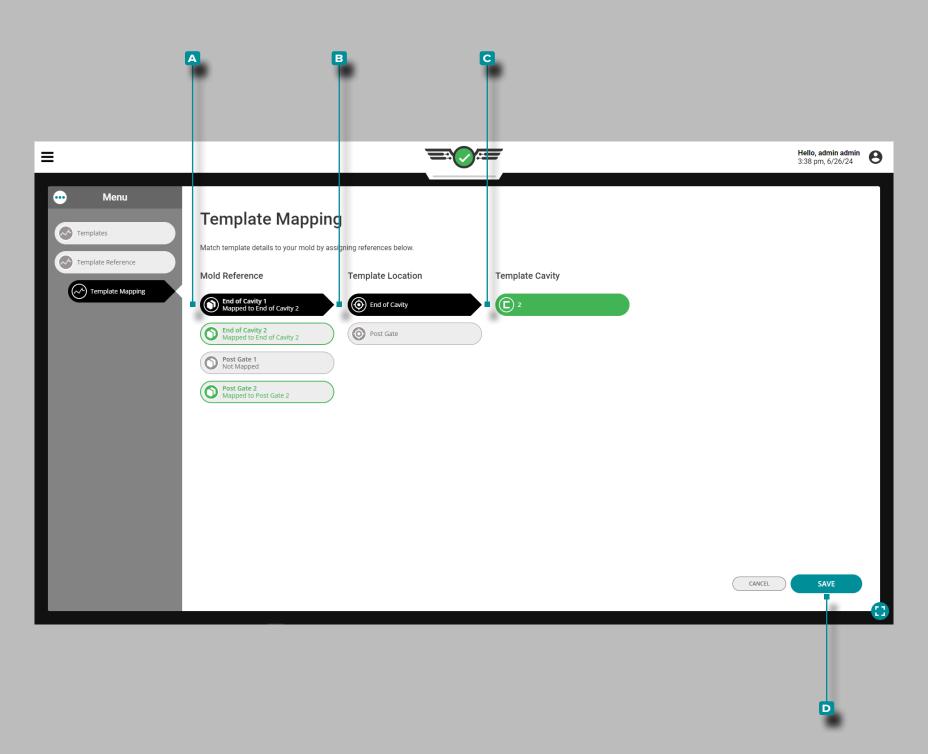
Hello, admin admin 2:27 pm. 6/26/24 \equiv Cycle Graph The current template displayed is for visual reference only.


Tableau de Bord (suite)

Modèles de Référence de Graphiques de Cycle

Le cycle du modèle de référence provenant d'un moule et d'un processus différents peut être affiché sur le graphique du cycle à l'aide de la fonction Référence du modèle. Les capteurs de pression d'empreinte peuvent être affectés au location/cavity du moule modèle de référence. Les affectations des vannes sur le moule peuvent être matched/assigned aux affectations des vannes sur le moule chargé.

✓ MISE EN GARDE La correspondance de modèle ne peut pas être utilisée lorsqu'un modèle de référence est chargé.

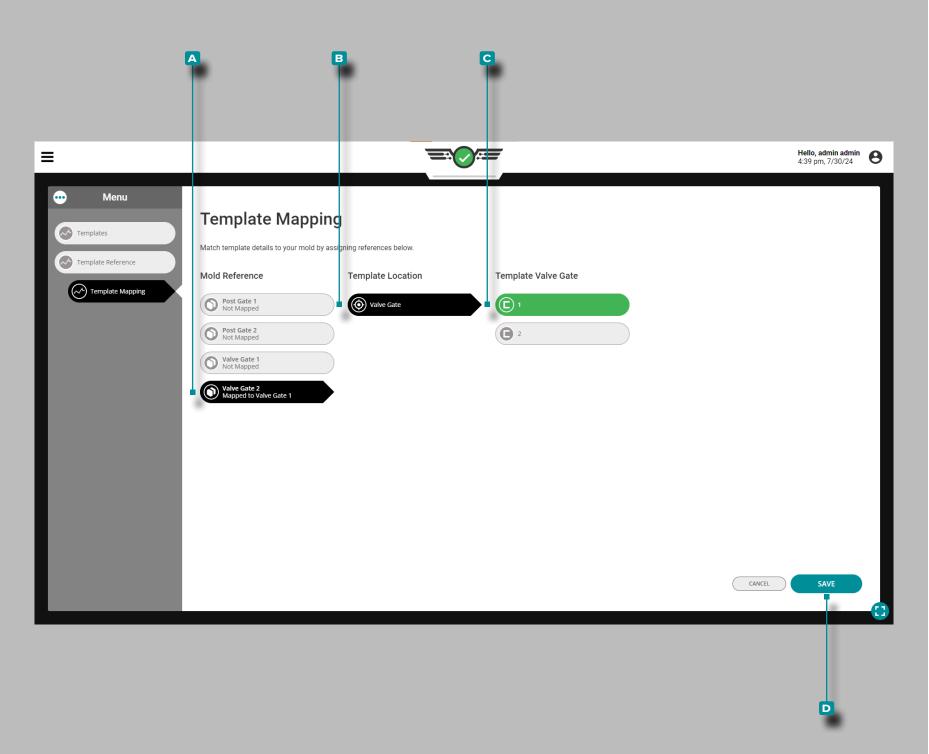

Lorsqu'un modèle de référence est chargé sur le graphique du cycle, le nom du modèle sur le graphique du cycle et les widgets Valeurs du cycle précédent sont remplacés par une combinaison jaune A notification/tooltip, '("Référence uniquement").' Appuyez sur Le t maintenez le bouton A notification/tool Astuce pour afficher le message suivant : « Le modèle actuellement affiché est uniquement à titre de référence visuelle. »

Charger un Modèle de Référence

Appuyez sur le bouton A fléché pour développer et afficher le menu de courbe de données de cycle, puis appuyez sur le bouton de menu pour afficher le menu modèle. Appuyez sur l'onglet C Référence du modèle pour afficher les modèles de référence disponibles. Appuyez sur pour sélectionner un moule. Vous pouvez éventuellement appuyer sur l'e icône de recherche, puis saisir un nom de moule pour rechercher un moule par son nom. Appuyez sur pour sélectionner un processus, puis appuyez sur pour sélectionner un moule moule par son le bouton selectionner un moule par son le bouton selectionner un moule par son le bouton selectionner un moule moule par son le bouton selectionner un moule par son le bouton selectionner un moule moule par son le bouton selectionner un moule par son nom sel

(i) **REMARQUE** Si le processus a un modèle sélectionné, le modèle sera automatiquement déchargé lorsqu'un modèle de référence est chargé.

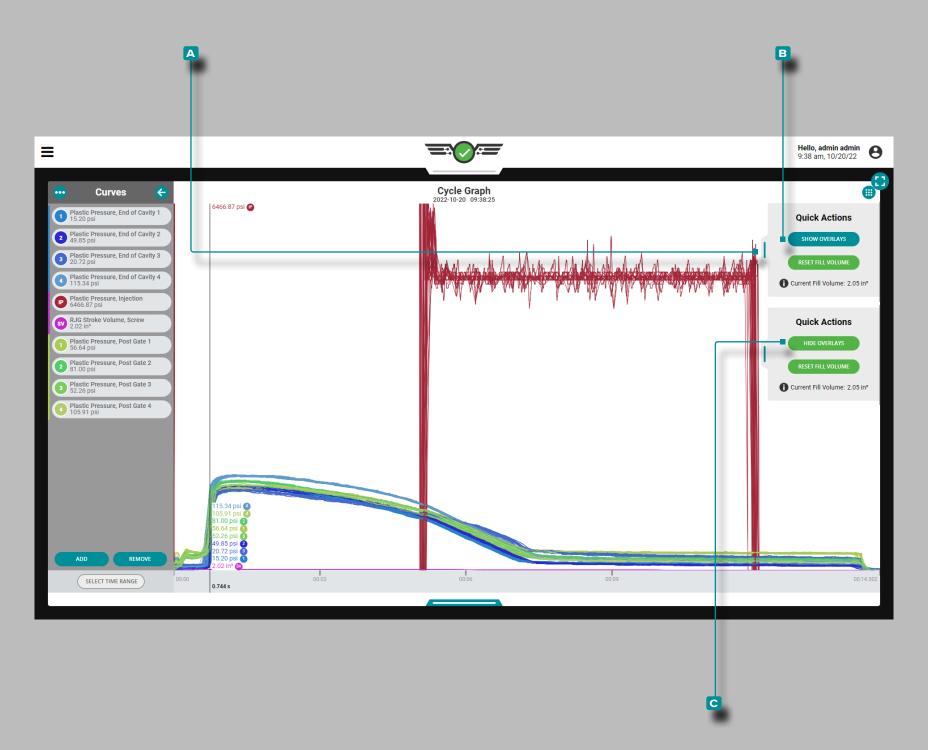
Mappage de Modèles


La fonction de mappage de modèles permet :

- les capteurs de pression d'empreinte actuellement affectés dans le moule doivent être adaptés aux capteurs du modèle de référence.
- les affectations d'obturateurs dans le moule doivent correspondre aux affectations d'obturateurs dans le modèle de référence.

Cartographie des Capteurs de Pression de Cavité

Tous les capteurs de pression à cavité avec correspondance location/cavity/ID les affectations sont automatiquement mappées entre le moule actuel et le moule modèle de référence.


Appuyez sur un A capteur de pression de cavité de référence de moule pour le sélectionner, puis appuyez sur l' emplacement approprié et la cavité modèle pour mapper (faire correspondre) les capteurs de référence de modèle aux capteurs de moule. Appuyez sur le bouton ENREGISTRER lorsque tous les capteurs ont été cartographiés.

Cartographie des Affectations des Obturateurs

Toutes les affectations de vannes avec des affectations correspondantes sont automatiquement mappées entre le processus actuel et le processus du modèle de référence.

Appuyez sur un A obturateur de vanne de référence pour le sélectionner, puis appuyez sur l' obturateur de vanne de procédé pour mapper (faire correspondre) les obturateurs de vanne de référence du modèle aux obturateurs de vanne de procédé. Appuyez sur le bouton centre le bouton le bouton centre le bouton centr

Cycles de Superposition de Graphiques

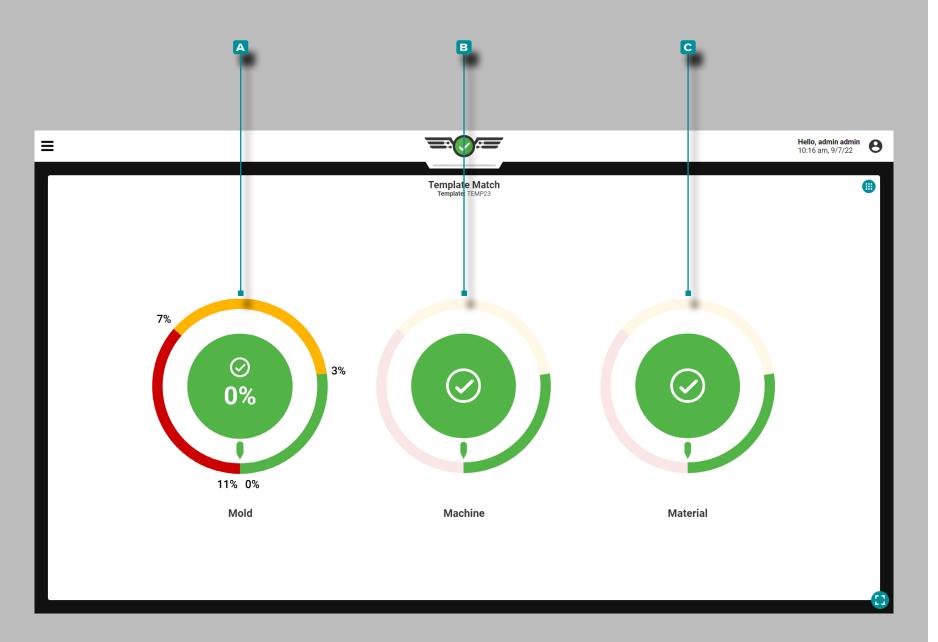
Sur le graphique de cycle, les cycles suivants peuvent être superposés les uns sur les autres à l'aide de la fonction de superposition.

Afficher les Cycles de Superposition

Sur le graphique du cycle, appuyez sur , maintenezenfoncé et faites glisser le curseur du menu Actions rapides vers la gauche, puis appuyez sur le bouton AFFICHER LES SUPER-POSITIONS ; cela superposera chaque cycle suivant au-dessus du cycle qui était en cours lorsque la fonction de superposition a été activée.

Effacer les Cycles de Superposition

Pour supprimer les cycles de superposition, appuyez sur le bouton C MASQUER LES SUPERPOSITIONS dans le menu graphique cyclique A actions rapides.


(i) **REMARQUE** Chaque fois que l'échelle du résumé ou du graphique de cycle est modifiée, la superposition appliquée sera réinitialisée; le système CoPilot ne stocke pas les données de cycle, il restitue les données. Pour afficher les données de cycle stockées, affichez la tâche sur le logiciel The Hub.

≡ Hello, admin admin 1:09 pm, 11/17/23 Cycle Graph SBSS TEMPLATE, 2023-11-17 13:09:06 Curves 1 Plastic Pressure, End of Cavity 1 2 Plastic Pressure, End of Cavity 2 1 Plastic Pressure, Post Gate 1 2 Plastic Pressure, Post Gate 2 Plastic Pressure, Injection SV RJG Stroke Volume, Screw SELECT TIME RANGE

Tableau de Bord (suite)

Erreurs du Capteur de Graphique de Cycle et Données Manquantes

Sur le graphique de cycle, les erreurs de capteur qui entraînent des données manquantes sont affichées sous forme de points. Les erreurs du capteur sont également affichées sur le graphique récapitulatif; reportez-vous à «Graphique Récapitulatif des Erreurs du Capteur et des Données Manquantes» on page 113.

Association de Modèles

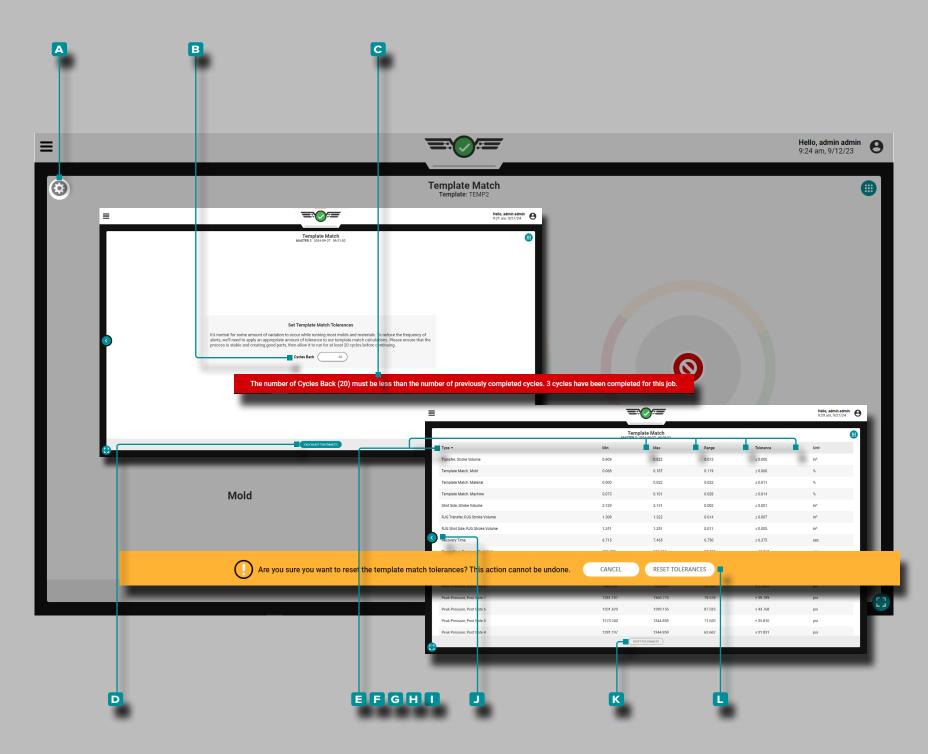

Le widget Correspondance de modèle fournit l'état de correspondance du modèle de processus en fonction des pourcentages de bon et d'avertissement saisis et du modèle de processus sélectionné sur le graphique de cycle pour les valeurs de processus du moule, de la machine et du matériau. Le widget Template Match compare les valeurs récapitulatives du cycle précédent aux valeurs du modèle et affiche la différence et le pourcentage de différence de chaque valeur.

Le widget Template Match affiche trois « cadrans » : A Moule,

B Machine et C Matériau. Appuyez sur et maintenez sur un
cadran de correspondance de modèle pour afficher le pourcentage
de correspondance du cycle précédent pour le cadran sélectionné;
relâchez la molette pour revenir à la vue par défaut.

Les pourcentages de correspondance affichés sur chaque cadran correspondent au pourcentage de correspondance entre le cycle précédent et la valeur du modèle référencé. Un zéro pour cent indique une différence de zéro pour cent par rapport à la valeur du modèle ; plus la différence en pourcentage d'une valeur par rapport à la valeur du modèle est élevée, plus la valeur est proche de la non-concordance. Lorsque le système est incapable de calculer une variable récapitulative, un état d'erreur s'affiche.

Si aucun pourcentage n'est entré pour un cadran lors de la configuration du processus, le cadran de correspondance de modèle sera inactif.



Association de Modèle (suite)

Un modèle doit être créé et chargé sur le graphique de cycle pour que le widget Correspondance de modèle fonctionne. Reportez-vous à «Créer un Modèle» on page 80 pour créer et charger des modèles de graphiques de cycle. Le processus doit être stable avant de créer un modèle à utiliser avec le widget Template Match.

Le nom du modèle chargé s'affiche sur le widget de correspondance de modèle. Si un utilisateur distant modifie le modèle chargé, le système utilisera ce modèle. Si de nouveaux capteurs sont connected/ assigned, un nouveau modèle doit être enregistré pour inclure les nouveaux capteurs.

Les utilisateurs peuvent ajouter et afficher le modèle correspondant au moule, à la machine, and/or tendances matérielles au graphique récapitulatif; reportez-vous à «Graphique Récapitulatif» on page 103. La correspondance globale du modèle de différence de pourcentage pour le moule, la machine et le matériau peut être ajoutée et affichée sur le widget Valeurs de cycle précédentes; reportez-vous au «Tableau des Valeurs du Cycle Précédent» on page 114.

Tolérance Définie (Variation Normale du Processus)

Lors de l'utilisation de la plupart des moules et des matériaux, une certaine variation normale se produit : c'est ce qu'on appelle la « tolérance ».

Pour réduire l'occurrence des alertes de correspondance de modèle provenant de variations, une tolérance sera calculée et ajoutée aux valeurs de correspondance de modèle ; assurez-vous que le processus est stable et crée de bonnes pièces, puis laissez-le fonctionner pendant au moins 20 cycles avant de continuer.

Pour définir des plages pour le processus (si aucune plage n'existe actuellement sur le processus), appuyez sur L' A icône d'engrenage dans le coin supérieur gauche du widget Correspondance de modèle.

Entrez le B nombre de cycles en arrière (minimum de 20); si aucune valeur n'est saisie, le système utilise par défaut le minimum de 20. Si l'entrée comporte plus de cycles qu'il n'en a été exécuté, une contification utilisateur est générée pour informer l'utilisateur.

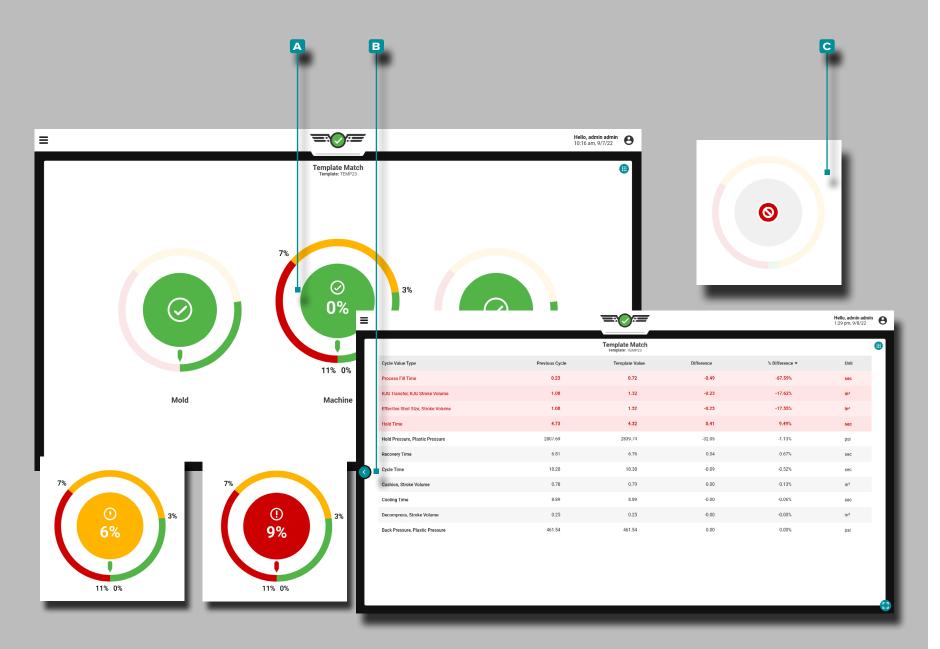
Appuyez sur 🖫 le bouton 🖸 CALCULER LA TOLÉRANCE pour commencer.

Un tableau indiquant le **E** type, le **F** minimum, le **G** maximum, la **H** plage, la **1** toléranceet **1** l'unité s'affiche pour chaque variable récapitulative disponible, y compris les variables qui ne sont actuellement pas utilisées pour la correspondance de modèle. Appuyez sur **L** l' **1** icône de retour pour revenir à la vue de la jauge de correspondance du modèle.

Pour réinitialiser les tolérances, appuyez sur le bouton RÉINITIA-LISER LES TOLÉRANCES sur le widget de correspondance de modèle, puis appuyez sur le bouton RÉINITIALISER LES TOLÉRANCES sur la notification utilisateur pour confirmer la réinitialisation. L'utilisateur doit définir un nouveau nombre de cycles en arrière et calculer à nouveau les tolérances pour définir la variation normale du processus après une réinitialisation des tolérances.

Hello, ad nin admin 10:16 am. 9/7/22 ≡ Template Match Cavity 8 3% 0% 11% 0% **=:** Template Match All mold cavities are currently in match!

Tableau de Bord (suite)


Correspondance du Moule

Le cadran Correspondance du Moule surveille et affiche les cavités connectées et attribuéespression pourcentage de correspondance du capteur. Le pourcentage de correspondance de moule est basé sur la vitesse de refroidissement EOC, la pression maximale, le temps de remplissage de la cavité et le remplissage de la cavité du cycle précédent. & valeurs récapitulatives du temps de conditionnement par rapport aux valeurs du modèle sélectionné. Si le centre du cadran est vert, toutes les cavités sont dans la plage de «bonne» correspondance; si le centre du cadran est jaune, au moins une cavité est dans la plage "avertissement"; et si le centre du cadran est rouge, au moins une cavité est « hors correspondance ».

Lors de la configuration du processus, les paramètres de correspondance de moule sont définis par défaut sur 3 % pour un bon pourcentage de correspondance et sur 7 % pour un pourcentage de correspondance d'avertissement.

Appuyez sur sur le A cadran Mold Match pour afficher les B cavités correctes, C les cavités d'avertissement, D les cavités non compatibleset E les cavités en état d'erreur. Appuyez sur le F bouton de retour pour revenir à la vue d'ensemble du widget Template Match. Si tous les capteurs correspondent, le cadran de correspondance du moule affichera un écran G de correspondance global de tous les capteurs. Le nom du moule s'affiche dans la vue des détails Mold Match.

Lorsqu'un ou plusieurs capteurs deviennent invalides, un **E** état d'erreur s'affiche. Si aucun capteur de moisissure n'est connected/assigned, le cadran de modèle de correspondance de moule sera inactif.

Correspondance de la machine

Les cadrans Machine Match surveillent et affichent le pourcentage de correspondance de 11 valeurs liées à la machine, notamment :

- · temps de remplissage process,
- Volume de commutation,
- volume injecté,
- tenirtemps, récupérationtemps,
- · décompresser/stroke le volume,
- · coussin/stroke le volume,
- temps de refroidissement,
- temps de cycle
- tenir pression/plastic pression, et
- · contre-pression/plastic pression .

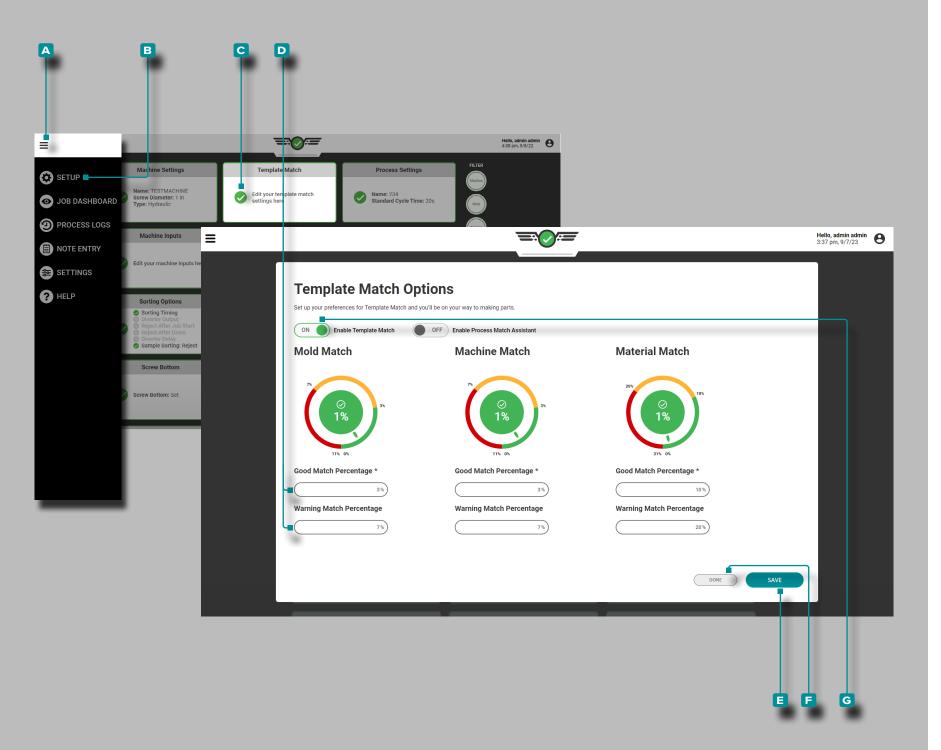
Il n'y a pas de paramètres par défaut pour les pourcentages de correspondance bons ou d'avertissement ; définissez toujours des pourcentages de correspondance bons et d'avertissement basés sur des valeurs de processus éprouvées et stables. Si le centre du cadran est vert, toutes les valeurs sont dans la « bonne » plage de correspondance ; si le centre du cadran est jaune, au moins une valeur est dans la plage « avertissement » ; et si le centre du cadran est rouge, au moins une valeur est « hors correspondance ».

Appuyez sur sur le A cadran Machine Match pour afficher les valeurs de la machine. Appuyez sur le B bouton de retour pour revenir à la vue d'ensemble du widget Template Match.

Assurez-vous que le minutage de sortie du tri est défini sur Fin de moule fermer pendant la configuration du processus pour permettre le refroidissementtemps à calculer; reportez-vous à la «Trier la Synchronisation de Sortie» on page 42.

Lorsqu'un ou plusieurs capteurs de machine deviennent invalides, un c état d'erreurs'affiche. Si aucune limite de bon ou d'avertissement de machine n'est attribuée, le cadran de modèle de correspondance de machine sera inactif.

Pour que Machine Match fonctionne, remplissezle volume doit être réglé à l'aide du curseur sur le graphique du cycle. Reportez-vous à «Régler le volume de remplissage au curseur» on page 72 Le volume au curseur » à la page pour obtenir des informations et des instructions sur le réglage du remplissagele volume au curseur.


Association Matière

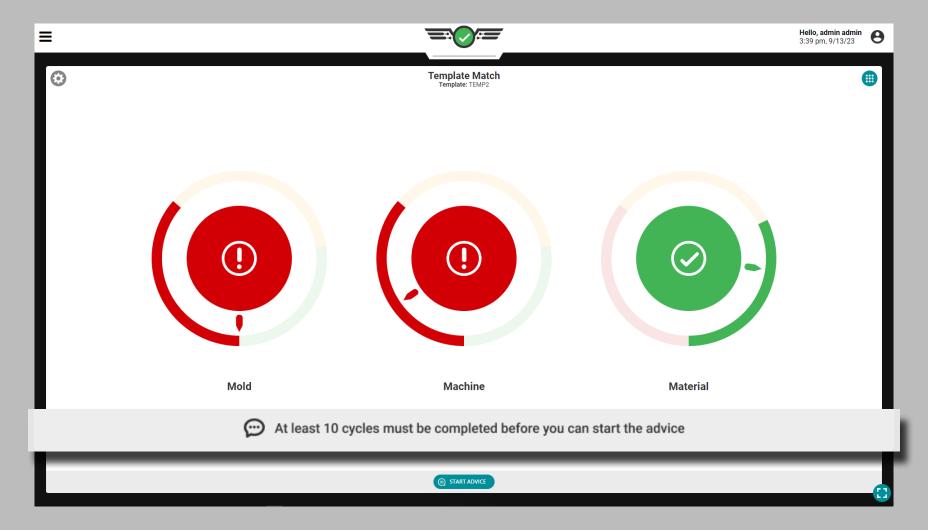
Le cadran Material Match surveille et affiche le pourcentage de correspondance de viscosité effectif. Material Match est basé sur la viscosité effective du cycle précédent par rapport à la valeur de viscosité effective du modèle sélectionné. Il n'y a pas de paramètres par défaut pour les pourcentages de correspondance bons ou d'avertissement; définissez toujours des pourcentages de correspondance bons et d'avertissement basés sur des valeurs de processus éprouvées et stables. Si le centre du cadran est vert, la viscosité effective se situe dans la plage de « bonne » correspondance ; si le centre du cadran est jaune, la viscosité effective est dans la plage "avertissement"; et si le centre du cadran est rouge, la viscosité effective est "hors correspondance".

Appuyez sur sur le A cadran Material Match pour afficher les valeurs de viscosité effective du cycle précédent, du modèle, de la différence et du pourcentage de différence. Appuyez sur le bouton de retour pour revenir à la vue d'ensemble du association de modèle de widget. Lorsqu'un capteur de machine devient invalide, un c état d'erreurs'affiche. Si aucune limite de bien matériel ou d'avertissement n'est attribuée, le cadran du modèle de correspondance de matériel sera inactif.

Si la correspondance des matériaux change alors qu'aucune machine settings/machine correspondent aux valeurs et qu'aucune température n'a changé, le matériau entrant a changé.

Pour que Material Match fonctionne, le volume de remplissage doit être réglé à l'aide du curseur sur le Cycle Graph. Reportez-vous à «Régler le volume de remplissage au curseur» on page 72 Le volume au curseur » à la page pour obtenir des informations et des instructions sur le réglage du remplissagele volume au curseur.

Modifier les Pourcentages de Association du Modèle

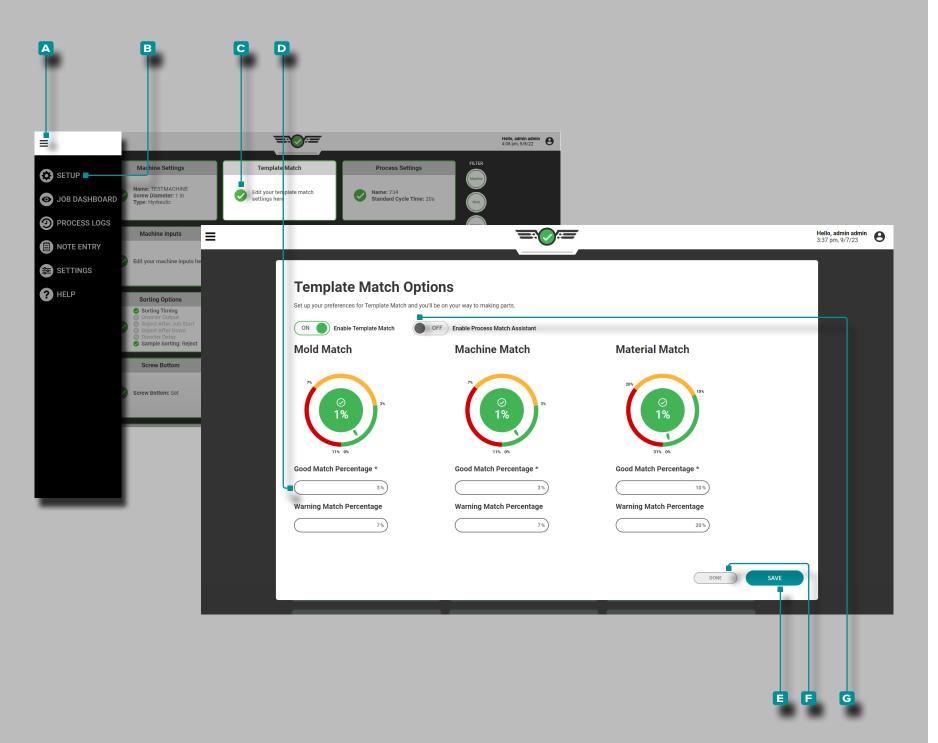

Les pourcentages de correspondance des moules, des machines et des matériaux et des avertissements peuvent être modifiés via le tableau de bord de configuration.

Appuyez surle bouton de Amenu, appuyez sur ableau de bord de configuration, puis appuyez sur la carte du tableau de bord de configuration de correspondance de modèle; Appuyez sur un champ de pourcentage de correspondance bonne ou d'avertissement pour modifier ce champ. Entrez | le pourcentage de correspondance souhaité, puis appuyez sur le bouton sAU-VEGARDER pour enregistrer les modifications, ou appuyez sur le bouton FAITE pour quitter et annuler les modifications.

Tourner la Association du Modèle Allumé/Eteint

La fonction de association de modèle peut être activée on/off après la configuration via la carte du tableau de bord de configuration.

Appuyez sur le bouton de A menu, appuyez sur la Carte du tableau de bord de configuration, puis appuyez sur la Carte du tableau de bord de configuration de correspondance de modèle; appuyez sur le Carte Activer la correspondance de modèle ON/OFF curseur pour activer ou désactiver la fonction Template Match, puis appuyez sur le bouton SAVE pour enregistrer les modifications, ou appuyez sur le bouton DONE pour quitter et annuler les modifications.


Conseils avec MAX

La fonction Conseil (anciennement appelée « Assistance à la correspondance des processus »), située sur le widget de correspondance des modèles, fournit des conseils à l'aide de Molding Automation Xperience (MAX, le Process Advisor®) alimenté par une IA intelligente et des techniques éprouvées Master Molder® pour les techniciens de processus afin de corriger les pressions du moule et la viscosité du matériau qui ne correspondent pas au modèle grâce à une correction systématique des variables de processus liées au remplissage des cavités, au garnissage des cavités et au refroidissement.

Configuration Minimale

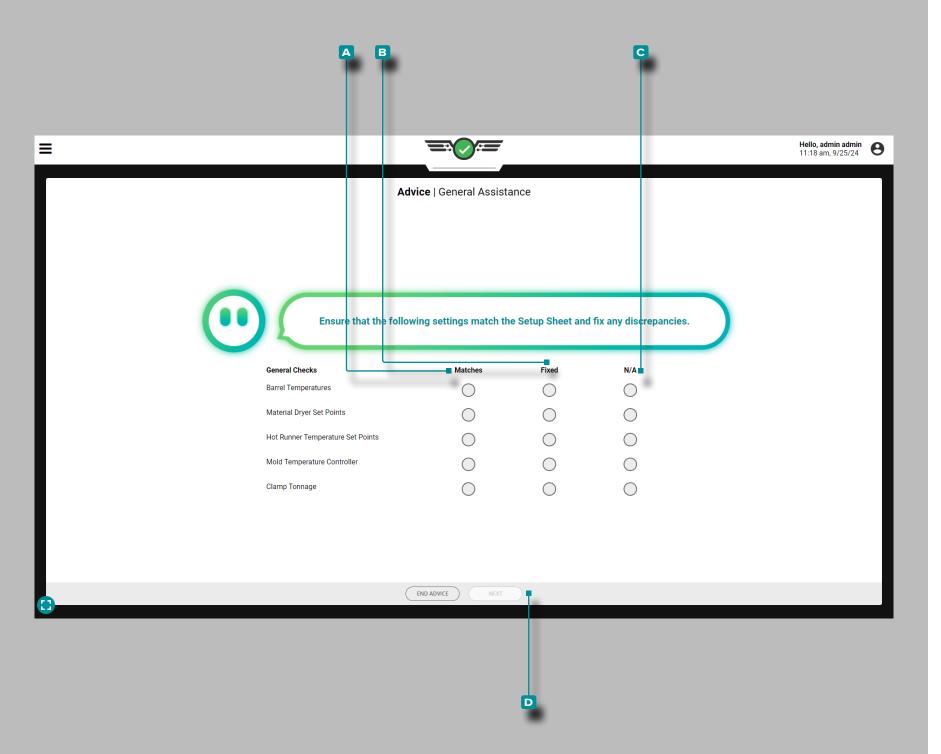
Pour utiliser Advice, les éléments suivants sont requis :

- 1. Doit avoir des capteurs de pression de cavité connectés et attribués
- 2. Un modèle de processus doit être chargé. Les conseils fonctionneront avec les modèles CoPilot existants; ces modèles contiendront des données récapitulatives calculées rétroactivement qui pourraient affecter le rendement au travail ou rendre les conseils et la correspondance des modèles peu fiables.
- 3. Les conseils doivent être activés sur la carte Configuration du processus > Paramètres du processus pendant la configuration OU pendant le processus à partir de la carte du tableau de bord Tableau de bord de configuration > Correspondance du modèle.
- **4.** Doit avoir au moins 10 cycles complétés sur le poste en cours avant de commencer le conseil.
- **5.** Un utilisateur avec le rôle d'ingénieur de processus ou de technicien de processus doit être connecté au système CoPilot.
- ✓ MISE EN GARDE Les conseils ne sont pas destinés à être utilisés avec les processus DECOUPLED III pour le moment.

Conseils avec MAX Activation

La fonction Conseil peut être activée on/off pendant la configuration du processus (reportez-vous à page 47), ou après la configuration via la carte du tableau de bord de configuration.

Appuyez sur le le bouton de la menu, appuyez ur le le le la tableau de bord de configuration, puis appuyez le sur la le carte du tableau de bord de configuration de correspondance de modèle; appuyez ur le curseur le Activer les conseils avec MAX allumé/ éteint pour activer ou désactiver la fonction Conseils, puis appuyez ur le bouton le ENREGISTRER pour enregistrer les modifications, ou appuyez usur le bouton le TERMINÉ pour quitter et annuler les modifications.


La barre de contrôle des conseils est masquée lorsque le moule est dans un état de correspondance. La barre de commandes avec le bouton Démarrer les conseils est visible uniquement lorsque le moule est dans un état d'avertissement ou hors correspondance.

Si le moule ne correspond pas *et que* le widget de correspondance de modèle n'est pas sélectionné, chaque icône de sélection de widget passe à un état hors correspondance avec une animation d'impulsion. Lorsque le moule est hors correspondance, si le widget Correspondance de modèle n'est pas déjà sélectionné, le menu de sélection du widget doit afficher un message et mettre en surbrillance le widget Correspondance de modèle.

✓ MISE EN GARDE Les variables composites ne sont pas référencées lors du processus de conseil.

Hors correspondance ne signifie pas qu'il existe des cycles d'alarme actifs ou des pièces défectueuses, mais simplement que le processus actuel ne correspond pas au modèle de processus sélectionné.

- MISE EN GARDE L'utilisateur doit être connecté pour démarrer le conseil.
- (i) **REMARQUE** Les conseils peuvent être désactivés par un ingénieur de processus pour n'importe quel moule.

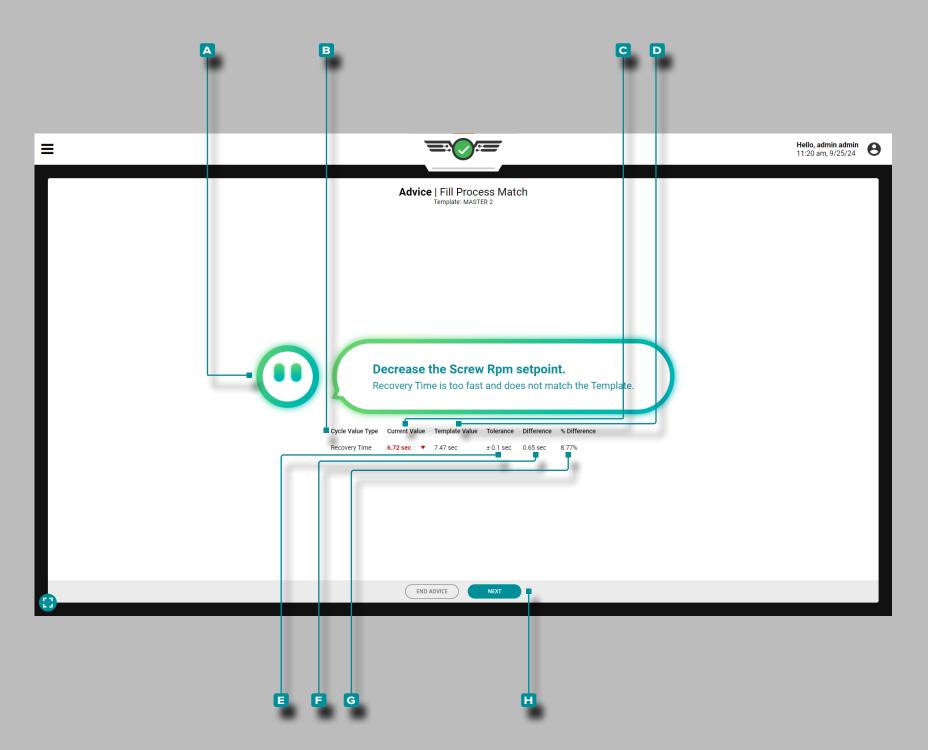

Vérifications Générales

Les vérifications générales sont des vérifications des paramètres sur la feuille de configuration qui incluent tous les paramètres superflus qui ne peuvent pas être facilement détectés à l'aide de RJG, Inc. Matériel du système CoPilot, comprenant :

- · Température du Fourreau
- points de consigne du séchoir à matériaux
- points de consigne de température des canaux chauds
- · contrôleur de température de moule

Appuyez sur pour sélectionner Correspondances, Corrigé ou N/A pour chaque vérification générale, puis appuyez sur le bouton SUIVANT pour continuer le processus d'assistance à la correspondance. Le système attendra trente minutes une fois les vérifications générales terminées avant que l'assistance à la correspondance de processus ne fournisse l'étape suivante.

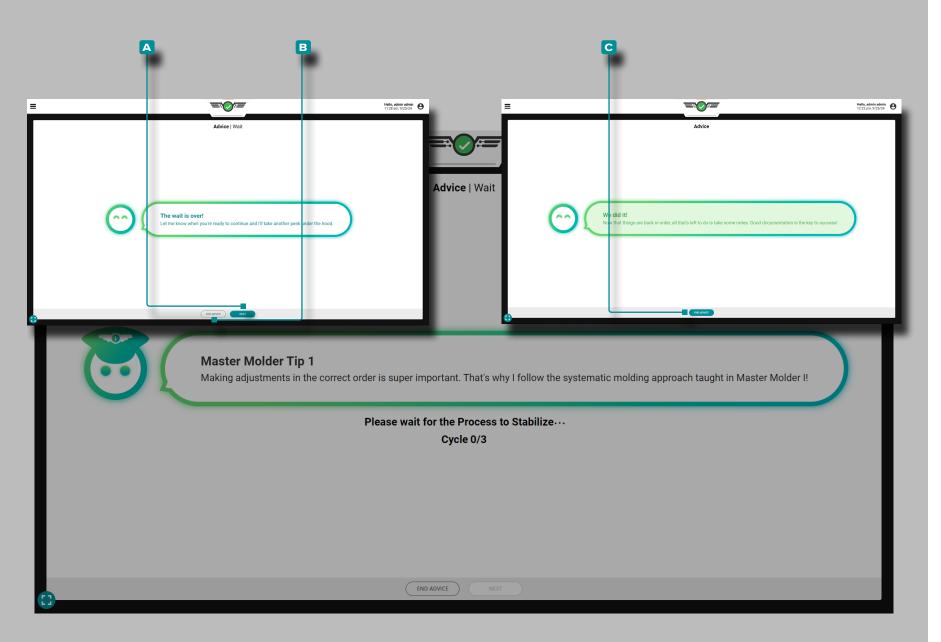
Des vérifications générales doivent être effectuées à chaque début de conseil.



Conseils de Démarrage avec MAX

Une fois les vérifications générales terminées, tous les éléments suivants doivent être vrais, sinon le logiciel demandera à l'utilisateur de « Trouver un ingénieur » et ne fournira pas advice/assistance:

- au moins 50 % des cavités doivent être dans un état d'avertissement ou hors correspondance;
- la viscosité du matériau doit être inférieure ou égale à ± 20 % du modèle de cycle;
- le solde de temps de remplissage de la cavité doit être supérieur ou égal à la limite inférieure pendant au moins 8 des 10 derniers cycles;
- toutes les pressions maximales de la cavité ne doivent pas dépasser 10 % du modèle de cycle ; and/or
- une variable récapitulative nécessaire aux conseils est absente du modèle de cycle.


Si le logiciel affiche la page Obtenir un ingénieur, **appuyez sur** le bouton A TERMINER LES CONSEILS, puis complétez les notes requises (reportez-vous aux «Notes de conseils» on page 101).

Conseils avec MAX

Après avoir effectué les vérifications générales et si les exigences de démarrage de l'avis sont remplies, le système CoPilot affichera un A avis avec MAX pour corriger le processus afin qu'il corresponde au modèle. La C valeur actuelle de la B variable en cours de correction sera affichée, ainsi que la D valeur du modèle, la E tolérance, la F différenceet le G pourcentage de différence.

Effectuez la modification recommandée, puis **appuyez sur** • le bouton • SUIVANT pour continuer.

Conseils avec MAX (suite)

Les conseils de MAX permettront au processus de se stabiliser pendant trois cycles après qu'un changement ait été apporté pour affecter les variables du processus. Attendez que les trois cycles s'écoulent. Pendant toute la durée des trois cycles de stabilisation, MAX sera équipé d'embouts de moulage Master Molder®.

Une fois les trois cycles d'attente écoulés, l'affichage change comme suit :

- guider l'utilisateur vers l'étape suivante du conseil; appuyez sur le bouton A SUIVANT pour continuer avec le conseil, ou appuyez sur FIN DU CONSEIL pour échapper au conseil, OU
- confirmer que le modèle a été matched/the la séance de conseils a été un succès; appuyez sur le bouton C TERMINER LES CONSEILS pour quitter l'écran de conseils, puis complétez les notes requises (reportez-vous à «Notes de conseils» on page 101).

Les conseils cesseront si:

- · trois tentatives de conseil ont été dépassées
- si la pression maximale de la cavité dépasse de 10 % la limite supérieure du gabarit, pour éviter les bavures et les dommages au moule
- la viscosité du matériau a changé de plus de 20 % après avoir effectué les contrôles généraux et après avoir vérifié la contre-pression et le temps de fonctionnement des vis

Un document de conseil est généré et versionné dans le logiciel qui enregistrera l'ensemble de règles de conseil qui ont été suivies et le nombre de fois où ces conseils ont été fournis pour corriger la valeur d'une variable de processus afin de faciliter son utilisation lors de l'enquête sur un problème.

Hello, admin admin 11:02 am, 9/13/23 \equiv Advice In order to end Advice, please document any changes made. Select a Problem Cosmetic - blush, texture, gloss, color Dimensions Flash Knit line No Defect Pin push Process Troubleshooting Short Sink Start Up Void Warp Other CANCEL

Tableau de Bord (suite)

Notes de conseils

Lorsque la séance de conseil est complétée ou abandonnée avant la fin, une note doit être inscrite. Le système remplira automatiquement le champ Nom de la note avec le nom d'utilisateur connecté ; le champ de nom n'est pas modifiable. Appuyez sur pour sélectionner un type de problème de processus de moulage (court, flash, éviers, etc.) dans la liste déroulante, puis appuyez sur le champ pour saisir une description; appuyez sur le bouton SAUVE-GARDER pour enregistrer la note. Les notes créées lors du workflow de conseil sont disponibles sur le widget Notes, ou sous l'onglet Notes ; reportez-vous aux pages «Notes :» on page 145 et»Entrée de Note» on page 159 .

Conseils avec MAX Interruptions

Si l'une des actions suivantes se produit pendant l'utilisation de la fonction de conseil avec MAX, le logiciel enregistrera la session de conseil comme « Interrompue »:

- le travail est arrêté
- · la machine entre dans un état d'arrêt
- · le modèle de cycle est modifié
- les seuils de correspondance de modèle sur le processus sont modifiés

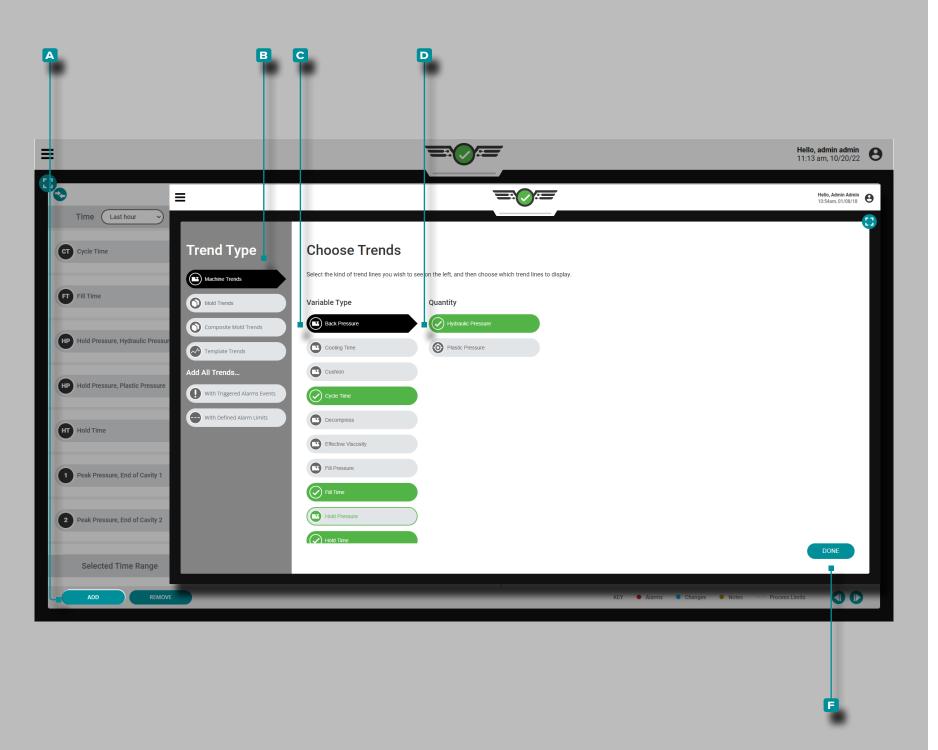
L'utilisateur doit saisir une note après l'interruption de la session de conseil, sauf si le travail a été arrêté; reportez-vous aux «Notes de conseils» on page 101.

Hello, admin admin 11:13 am. 10/20/22 \equiv **Summary Graph** Time Last hour CT Cycle Time FT Fill Time HP Hold Pressure, Hydraulic Pressure HP Hold Pressure, Plastic Pressure HT Hold Time Peak Pressure, End of Cavity 1 Peak Pressure, End of Cavity 2 Selected Time Range

Tableau de Bord (suite)

Graphique Récapitulatif

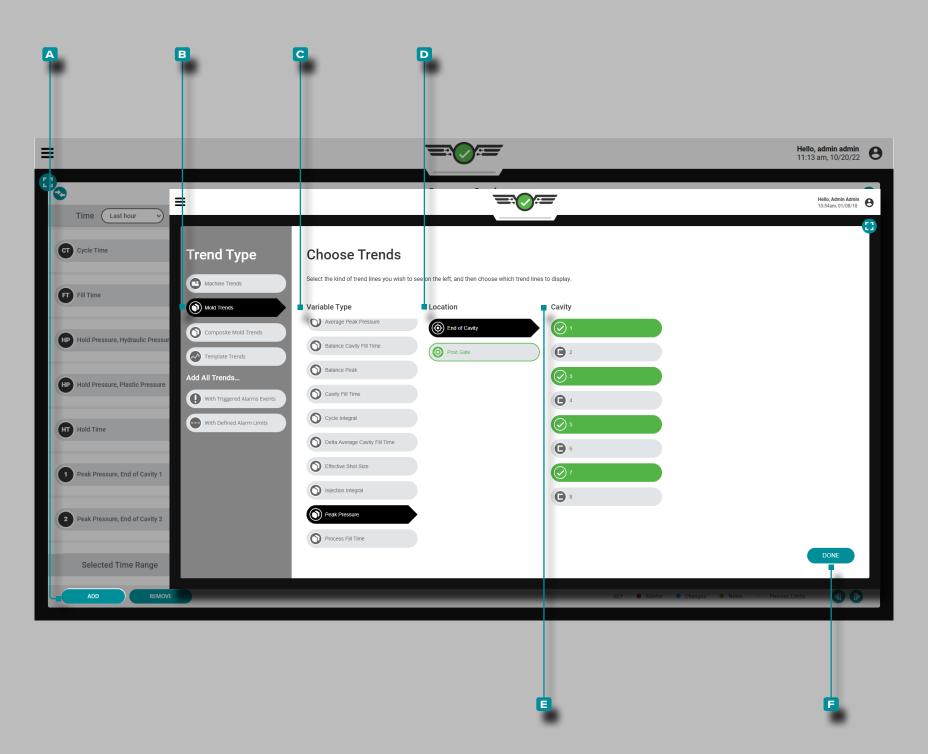
Tendances des Données Cycliques


Le graphique récapitulatif fournit la sélection et l'affichage graphique des données récapitulatives du cycle de travail qui forment des tendances et mettent en évidence les conditions d'alarme.

The cycle summary data are summary values of a complete cycle; a single data point represents a cycle. Les points de données sont affichés dans l'ordre chronologique, créant une courbe et permettant la visualisation des tendances. Le type et le nombre de tendances des données de cycle disponibles dépendent de l'équipement (machine et moule) installé.

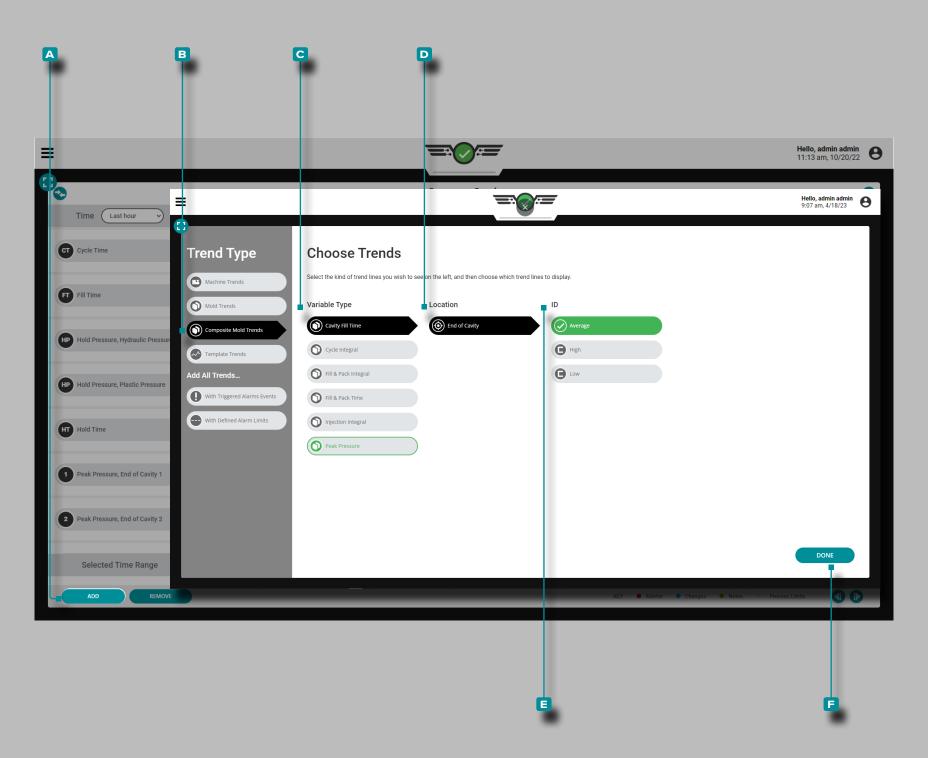
Les limites de processus supérieures et inférieures définies pour chaque type de tendance de données de cycle sont affichées sous forme de lignes pointillées (- - - -) avec la tendance; les avertissements (•), les alarmes (•), les changements (•) et les remarques (•) sont également affichés sur chaque tendance.

Appuyez ♣ et maintenez sur le graphique de résumé pour révéler le A curseur; le A curseur affiche les valeurs de la courbe des données de cycle. Faites glisser le A curseur ← vers la gauche et vers la droite → pour afficher les valeurs sur toute la courbe de données du cycle.


Appuyez & sur les boutons PRÉCÉDENT ou C SUIVANT pour déplacer le curseur vers le cycle précédent ou suivant.

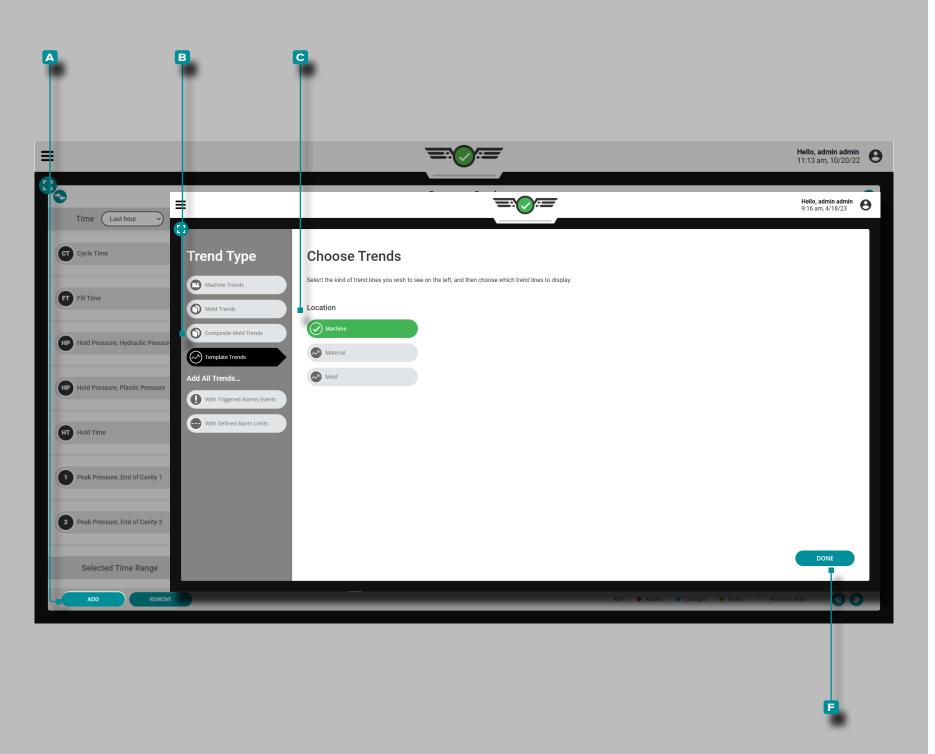
Commandes du Graphique Récapitulatif

Ajouter des Tendances de Machine


Appuyez sur le bouton A AJOUTER pour afficher les tendances des données de cycle de machine sélectionnables; appuyez sur le type de tendance des données de cycle et type de variable souhaités, et, le cas échéant, appuyez sur la p quantité souhaitée, puis appuyez sur le bouton tendance pour revenir au graphique récapitulatif.

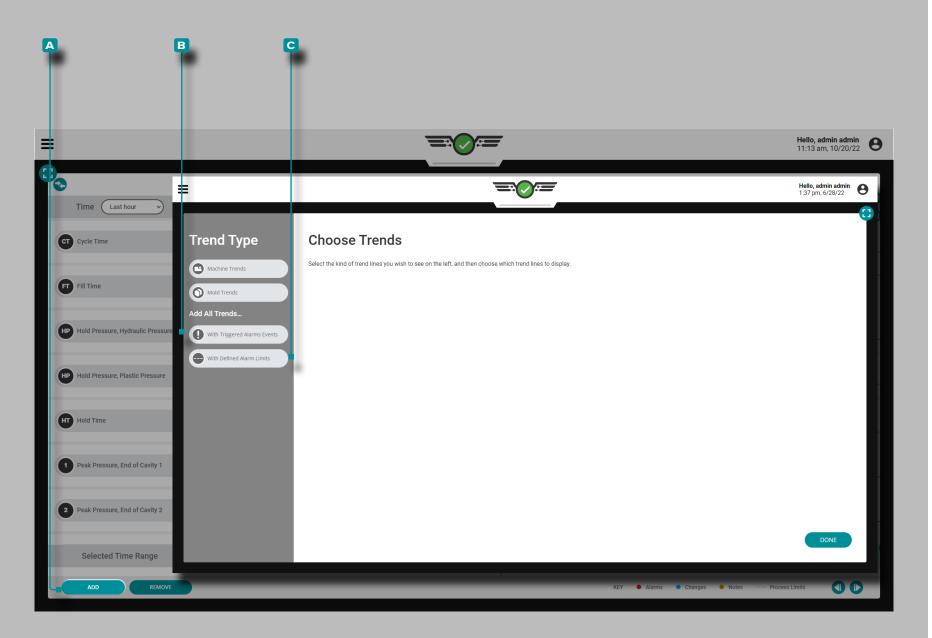
Commandes du Graphique de Cycle (suite)

Ajouter des Tendances de Moisissure


Appuyez sur le bouton A AJOUTER pour afficher les tendances des données de cycle de moulage sélectionnables; appuyez sur le B type de tendance des données de cycle souhaité, le C type de variable, D l'emplacement et, le cas échéant, appuyez sur la cavité souhaitée, puis appuyez sur le bouton F TERMINÉ pour revenir au graphique récapitulatif.

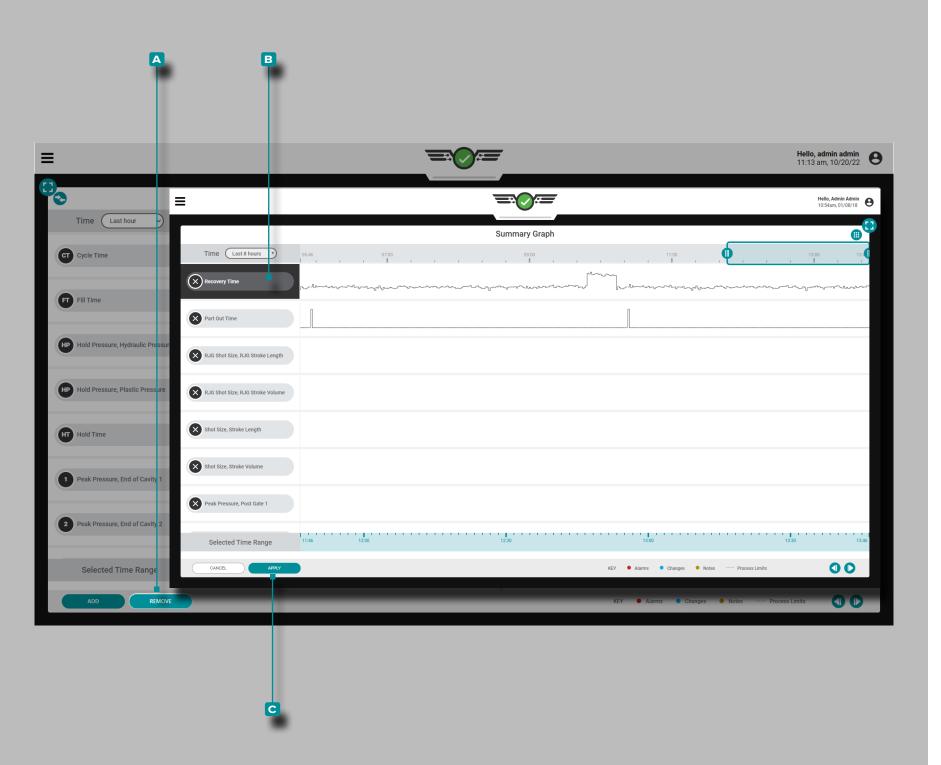
Commandes du Graphique de Cycle (suite)

Ajouter des tendances de moules composites


Appuyez sur le bouton A AJOUTER pour afficher les tendances des données de cycle sélectionnables ; appuyez sur le les tendances du moule composite, C le type de variable, D l'emplacement et appuyez sur le l'ID souhaité (moyenne, élevée, basse ou plage), puis appuyez sur le bouton F TERMINÉ pour revenir au résumé graphique.

Commandes du Graphique de Cycle (suite)

Ajouter des tendances de modèle


Appuyez sur le bouton A AJOUTER pour afficher les tendances des données de cycle de modèle sélectionnables ; appuyez sur les tendances du modèle, c emplacement (machine, matériau ou moule), puis appuyez sur le bouton F TERMINÉ pour revenir au graphique récapitulatif.

Commandes du Graphique de Cycle (suite)

Ajouter Toutes les Tendances Avec des Alarmes ou des Limites

Appuyez sur le bouton A AJOUTER pour afficher les tendances des données de cycle de machine ou de moule sélectionnables; appuyez sur le bouton B Ajouter toutes les tendances avec des événements d'alarme déclenchés et/ou C Ajouter toutes les tendances avec des limites d'alarme définies pour afficher toutes les tendances avec des événements d'alarme et/ou définir des limites et revenir au graphique récapitulatif.

Commandes du Graphique de Cycle (suite)

Ajouter/Supprimer des Tendances

Appuyez sur le bouton A SUPPRIMER, appuyez sur la B tendance des données de cycle souhaitée, puis appuyez sur le bouton APPLIQUER pour supprimer une tendance.

В Hello, Admin Admin \equiv **Summary Graph** Time Last 8 hours Last hour Last 8 hours Last 24 hours HT Hold Time CT Cycle Time HP Hold Pressure Selected Time Range

Tableau de Bord (suite)

Commandes du Graphique de Cycle (suite)

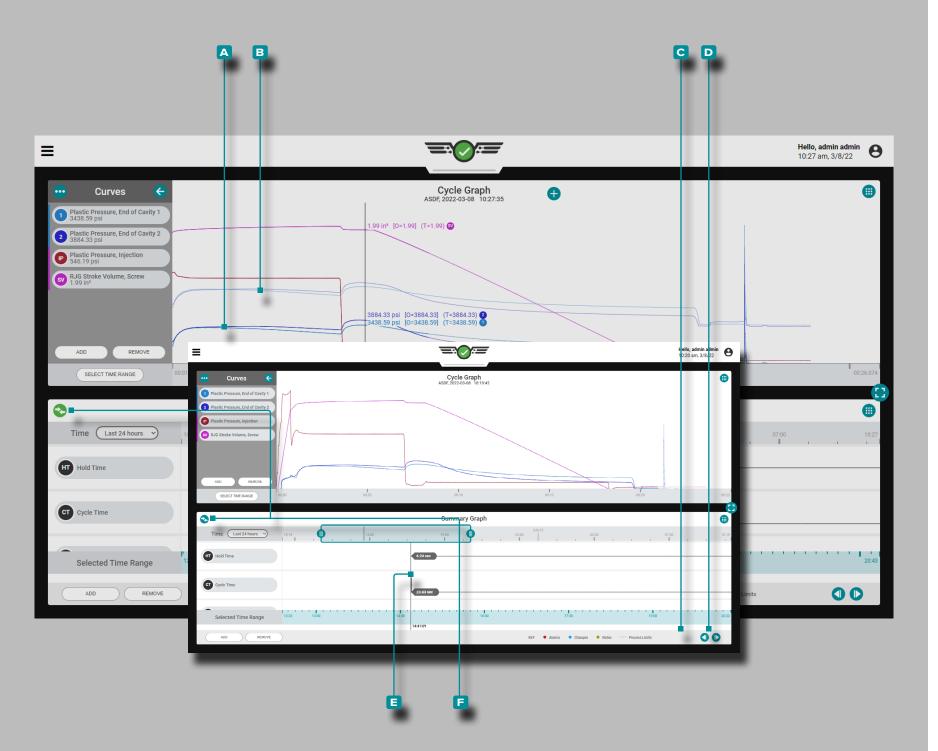
Sélectionnez la Plage de Temps des Données

Les graphiques de tendance récapitulatifs affichent les données de la dernière heure, des 8 dernières heures ou des dernières 24 heures; Appuyez sur le menu déroulant A Heure, puis appuyez sur la plage de temps de données souhaitée pour les graphiques de tendance récapitulatifs affichés. La plage de temps sera mise à jour automatiquement à l'écran et s'affichera en haut du graphique récapitulatif.

Zoom Avant ou Arrière

Appuyez , maintenez et faites glisser l'un ou les deux curseurs jusqu'à l'heure souhaitée. Une indication mise à l'échelle automatiquement de la plage de temps sélectionnée sera mise à jour sous les tendances récapitulatives. Appuyez, maintenez et faites glisser la barre de sélection de temps pour faire un panoramique à gauche ou à droite sur le graphique cyclique.

Hello, admin admin 10:20 am, 3/8/22 \equiv Hello, admin admin 10:09 am, 3/8/22 Cur = 1 Plastic Press Cycle Graph ASDF, 2022-03-08 10:09:05 Curves 1 Plastic Pressure, End of Cavity 1 SV RJG Stroke RJG Stroke Volume, Screw ADD ADD REMOVE SELECT Summary Graph Time (Last 24 hours) Time L Hold Time CT Cycle Time Selected Time Range 00 Selected 00


Tableau de Bord (suite)

Comparaison des Cycles du Graphique Récapitulatif aux Cycles Actuels

Les cycles du graphique récapitulatif peuvent être sélectionnés pour comparaison et affichés sur le graphique de cycle actuel. Cette fonctionnalité fonctionne mieux lorsque le graphique récapitulatif et le graphique de cycle sont affichés ensemble sur le tableau de bord des tâches (reportez-vous à la page 52 pour obtenir des instructions sur le choix et le redimensionnement des widgets du tableau de bord des tâches).

Sélection d'un Cycle à Comparer

Appuyez sur , maintenez enfoncé et faites glisser le Curseur sur le graphique récapitulatif jusqu'au cycle souhaité ; l' icône de comparaison sera bleu sarcelle. Si aucun cycle n'est sélectionné pour la superposition sur le graphique récapitulatif, l'icône de comparaison sera grise. Appuyez sur il l'icône de comparaison pour afficher le cycle de graphique récapitulatif sélectionné sur le graphique de cycle ; l'icône sera verte.

Comparaison des Cycles du Graphique Récapitulatif aux Cycles Actuels (a continué)

Comparaison des graphiques de cycle Affichage et comportement du cycle

Le graphique de cycle affichera les courbes de la A tâche en cours d'exécution et le B cycle sélectionné à partir du graphique récapitulatif. Le cycle de comparaison apparaît sur le graphique de cycle sous la forme de courbes plus claires que les courbes de cycle de la tâche en cours d'exécution.

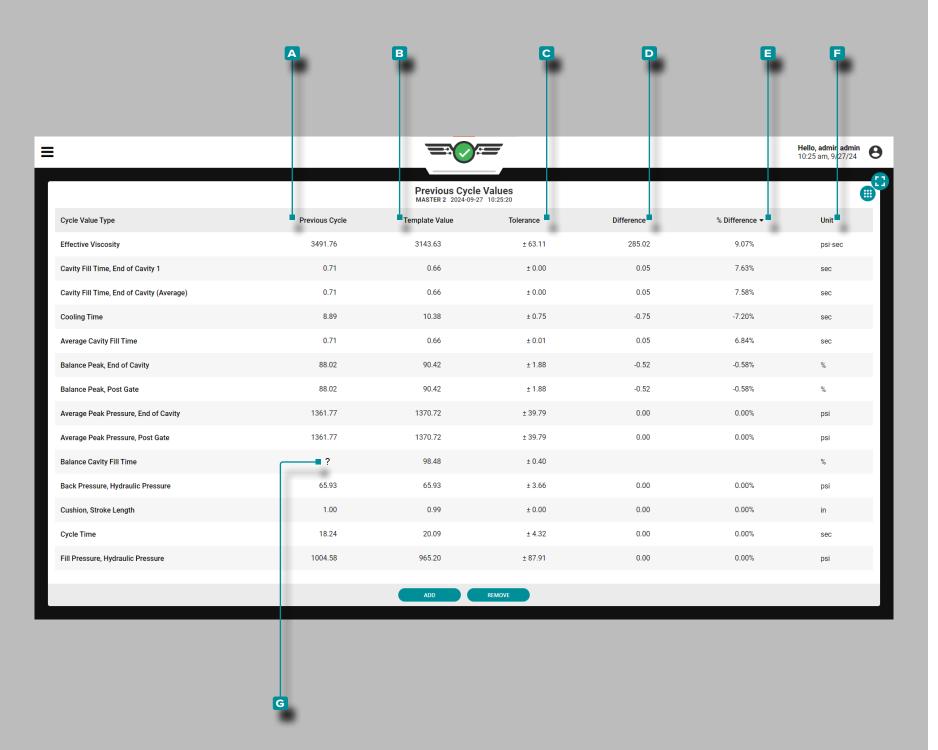
Si un modèle est actif sur le graphique du cycle, le modèle continuera à être affiché. Le curseur du graphique de cycle affichera les valeurs du cycle actuel, le modèle (s'il est sélectionné) et le cycle de superposition sélectionné dans le graphique récapitulatif.

Le cycle de comparaison restera affiché sur le graphique du cycle jusqu'à ce que le cycle de comparaison soit effacé ou jusqu'à ce que le travail soit arrêté.

Sélection d'un Cycle Différent pour la Comparaison

Pour sélectionner un cycle différent à comparer sur le graphique du cycle, utilisez les boutons © PRÉCÉDENT ou D SUIVANT pour naviguer jusqu'au cycle souhaité, OU appuyez sur , maintenez enfoncé et faites glisser le curseur jusqu'au cycle souhaité. Le graphique du cycle sera automatiquement mis à jour.

Effacement d'un cycle de comparaison


Pour supprimer un cycle de comparaison, **appuyez** sur l'icône de comparaison; l'icône sera bleu sarcelle OU arrêtera le travail.

Reportez-vous à la page 69-page 80 pour obtenir des informations et des instructions sur le widget Cycle Graph.

Graphique Récapitulatif des Erreurs du Capteur et des Données Manquantes

Sur le graphique récapitulatif, les erreurs de capteur qui entraînent des données manquantes sont affichées sous forme de points. Les erreurs de capteur sont également affichées sur le graphique de cycle; reportez-vous à «Erreurs du Capteur de Graphique de Cycle et Données Manquantes» on page 87.

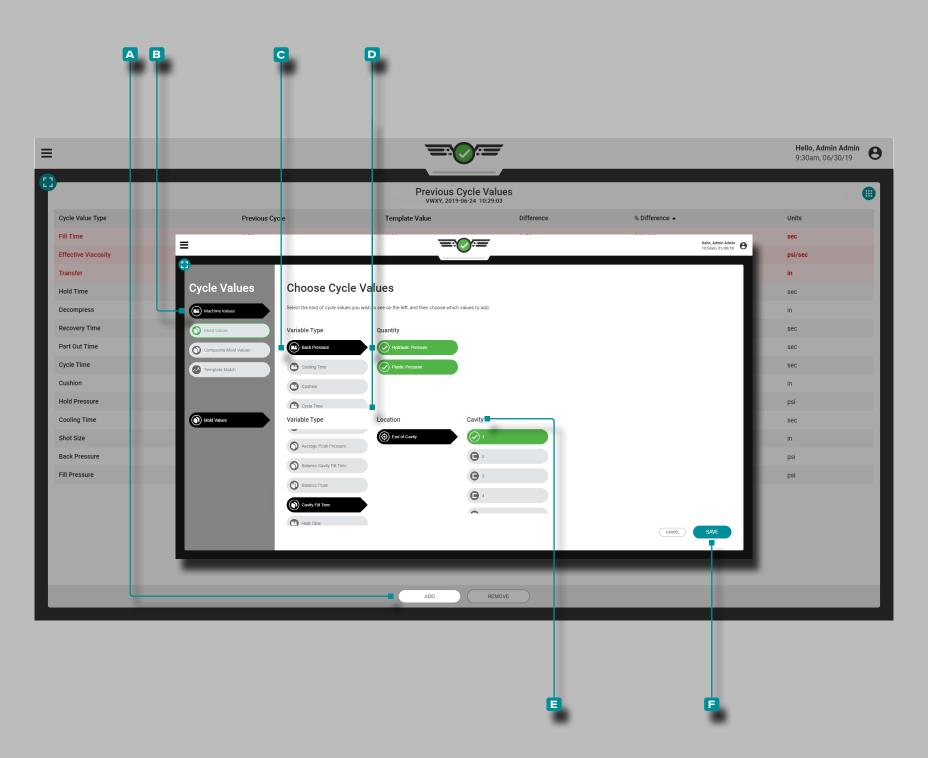
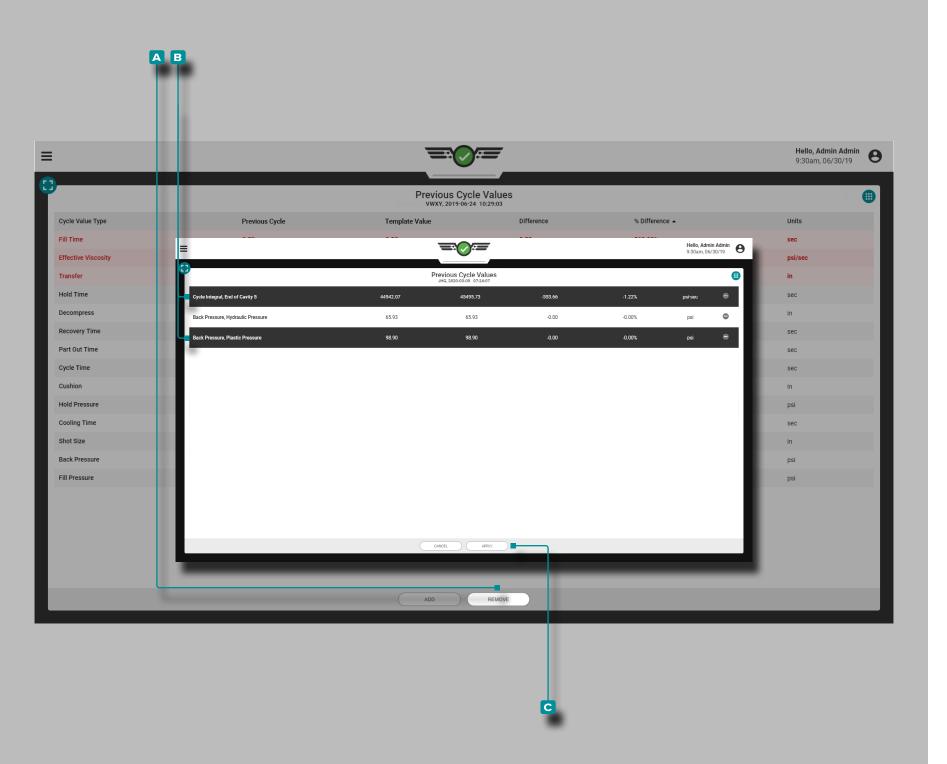
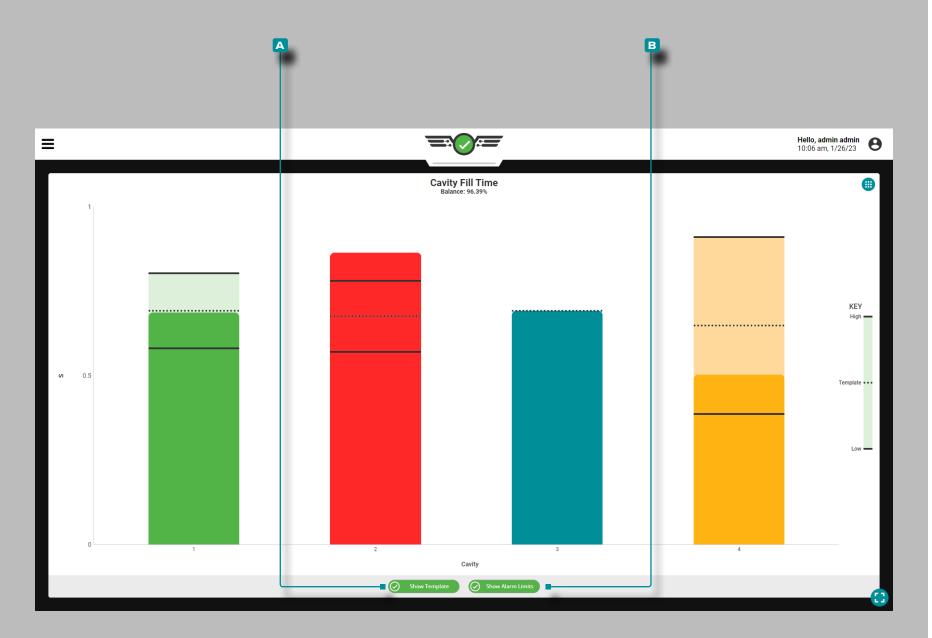


Tableau des Valeurs du Cycle Précédent

Les valeurs de processus de chaque cycle sont accessibles dans la vue Valeurs du cycle précédent du tableau de bord des travaux, y compris les temperatures, minuteries, les pressions, les positions et la viscosité du matériau. En plus des valeurs de processus, les valeurs de cycle pour les pressions des capteurs de pression d'empreinte sont affichées.


Le tableau peut afficher chaque valeur de cycle de processus, y compris la A valeur du cycle précédent, la B valeur du modèle (cible), la C tolérance (affichera une valeur uniquement si la correspondance du modèle ou les conseils avec MAX sont activés; reportez-vous à «Tolérance Définie (Variation Normale du Processus)» on page 90), D Différence (des valeurs cibles/actuelles), S (pourcentage) Différence (des valeurs cibles/actuelles) et P Unités (de mesure).

Les valeurs de cycle qui ne correspondent pas sont surlignées en rouge, avec du texte rouge, tandis que les valeurs d'avertissement sont surlignées en jaune, avec du texte jaune pour une identification facile Si le système CoPilot ne peut pas calculer une ou plusieurs valeurs de cycle précédentes, un point d'interrogation (?) s'affichera dans la colonne de valeur du cycle précédent pour cette valeur; la différence et (pourcentage) La différence ne sera pas non plus calculée et sera vide.

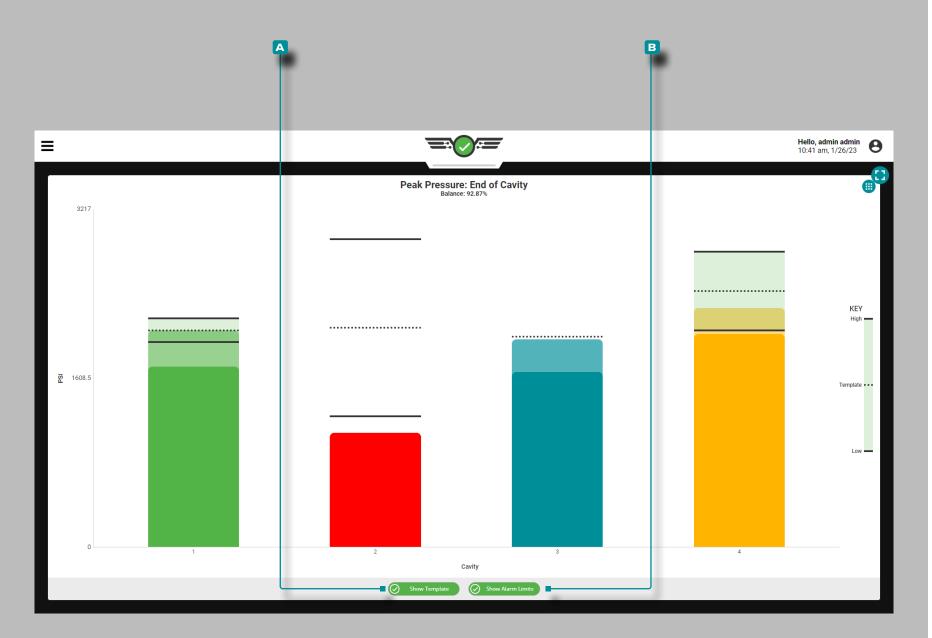

Ajouter les Valeurs du Cycle Précédent

Appuyez sur le bouton A AJOUTER pour afficher les valeurs de cycle sélectionnables; appuyez sur le sur le type de valeur de cycle souhaité, le type de variable et, le cas échéant, appuyez sur la quantité ou l'emplacement et la cavité souhaités, puis appuyez sur le bouton FENREGISTRER pour revenir au graphique récapitulatif.

Supprimer les Valeurs de Cycle Précédentes

Appuyez sur le bouton A SUPPRIMER, appuyez sur la ou les B valeurs de cycle souhaitées, puis appuyez sur le bouton APPLIQUER pour supprimer la ou les valeurs de cycle sélectionnées.

Temps de Remplissage de la Cavité

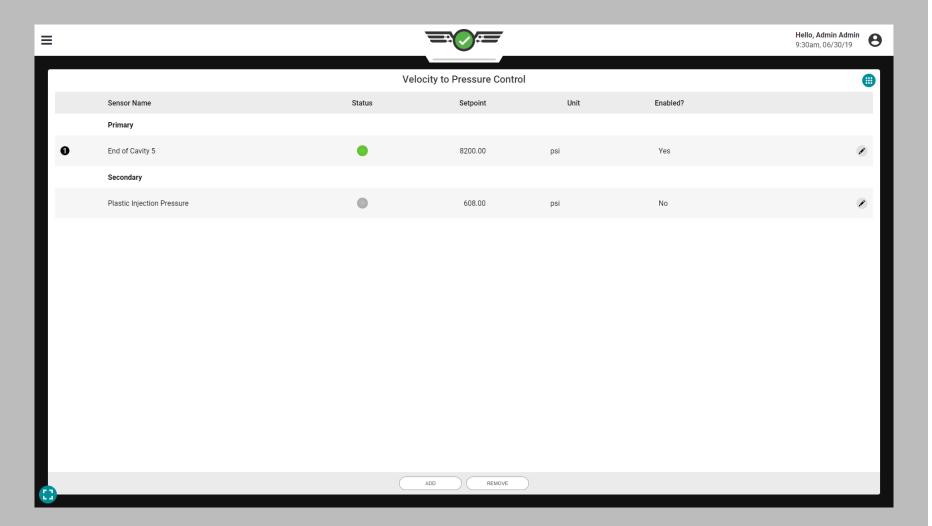

Le widget Temps de remplissage de la cavité î affiche chaque temps de remplissage de la cavité pour les cavités qui ont un capteur de pression de cavité EOC assigné et des paramètres d'alarme de temps de remplissage de la cavité sur un graphique à barres, et affiche l'équilibre du temps de remplissage de la cavité - une comparaison des temps de remplissage de la cavité dans le moule représenté dans un pourcentage. Le graphique de mise à jour en direct comporte également des repères sur la barre de chaque empreinte indiquant la limite d'alarme inférieure, la valeur du modèle et la limite d'alarme supérieure (supérieure).

(i) **REMARQUE** Une alarme de temps de remplissage de cavité doit être définie pour chaque capteur de pression de cavité EOC afin que le widget de temps de remplissage de cavité affiche les données pour chaque cavité / capteur.

Lorsque le matériau pénètre dans les cavités du moule et est détecté par les capteurs EOC, les barres du diagramme se «remplissent»; lorsque les cavités sont détectées comme pleines, les barres se reposent à leur position de remplissage détectée jusqu'à la fin du cycle. Si le temps de remplissage se situe dans les limites d'alarme désignées, la barre sera verte ; si le temps de remplissage est en état d'avertissement, la barre sera jaune ; si le temps de remplissage est supérieur ou inférieur aux limites d'alarme désignées, la barre sera rouge ; et si aucune alarme n'est définie pour la cavité, la barre sera bleue.

(i) **REMARQUE** Si une cavité ne dispose pas d'un ensemble d'alarme, la barre représentant la cavité sera bleue, et ne pas afficher les indications vertes ou rouges qui sont présentes lorsque les alarmes sont affectées.

Appuyez sur le bouton A Afficher le modèle pour afficher / masquer la ligne de valeur du modèle sur le graphique; appuyez sur le bouton B Afficher les limites d'alarme pour afficher / masquer les lignes de limite d'alarme haute (supérieure) et basse (inférieure) sur le graphique. Appuyez tet maintenez sur une barre pour afficher les valeurs limites d'alarme supérieure et inférieure, la valeur du modèle et la valeur réelle du temps de remplissage de la cavité.

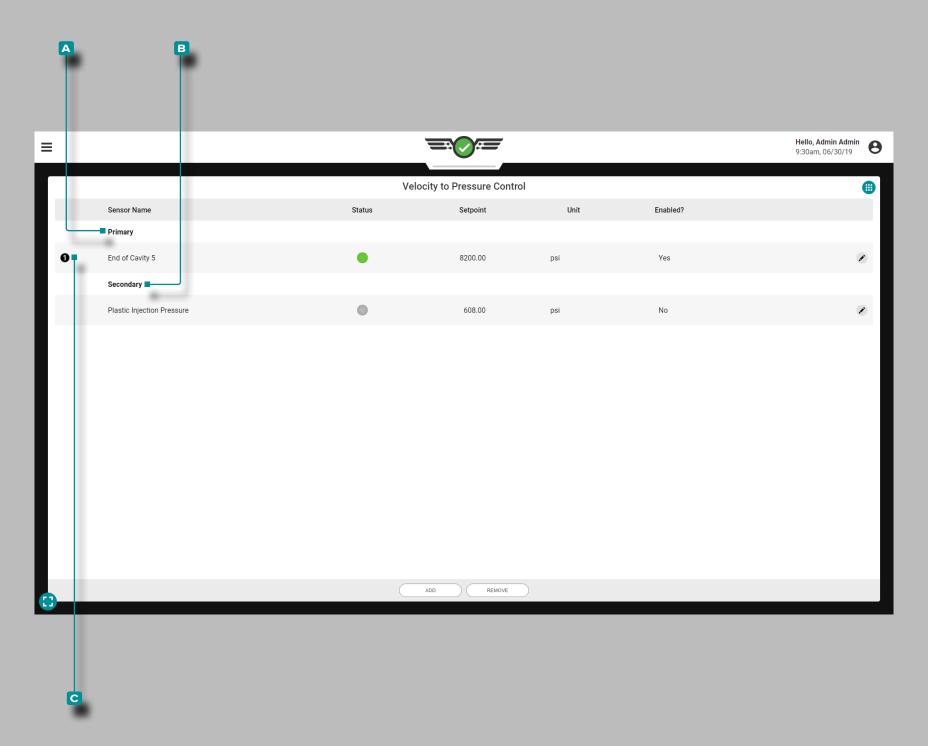

Pression de Pointe: Fin de la Cavité

Le widget Pression de crête: Fin de la cavité î affiche chaque pression de crête à l'emplacement EOC pour les cavités qui ont un capteur de pression en fin de remplissage attribué avec des paramètres de limite d'alarme de pression de crête sur un graphique à barres unique, et affiche l'équilibre de pression de crête EOC - une comparaison des pics de pression EOC à travers le moule représentés en pourcentage. Le graphique de mise à jour en direct comporte également des repères sur la barre de chaque empreinte indiquant la limite d'alarme inférieure, la valeur du modèle et la limite d'alarme haute (supérieure).

(i) **REMARQUE** Une alarme de pression de crête doit être définie pour chaque capteur de pression de cavité EOC afin que le widget Pression de crête: EOC affiche les données pour chaque cavité / capteur

Une alarme de pression de crête doit être définie pour chaque capteur de pression de cavité EOC afin que le widget Pression de crête: EOC affiche les données pour chaque cavité / capteur. Si la pression maximale se situe dans les limites d'alarme désignées, la barre sera verte ; si le pic de pression est en avertissement, la barre sera jaune ; si la pression maximale est supérieure ou inférieure aux limites d'alarme désignées, la barre sera rouge ; et si aucune alarme n'est définie pour la cavité, la barre sera bleue.

Appuyez sur le bouton A Afficher le modèle pour afficher / masquer la ligne de valeur du modèle sur le graphique; appuyez sur le bouton Afficher les limites d'alarme pour afficher / masquer les lignes de limite d'alarme haute (supérieure) et basse (inférieure) sur le graphique. Appuyez et maintenez sur une barre pour afficher les valeurs limites d'alarme supérieure et inférieure, la valeur du modèle et la pression de crête réelle à la valeur EOC.



Contrôle de la Vitesse à la Pression (V \rightarrow P)

Le transfert de vitesse à pression est utilisé pour contrôler le moment où la machine passe de l'étape de vitesse (remplissage et conditionnement) à l'étape de pression (maintien) en utilisant une pression d'empreinte avec un point de consigne désigné ou un temps désigné après le début de la séquence de remplissage. Cela supprime le transfert contrôlé par la machine, basé sur la position de la vis à l'extérieur du moule, et déplace à la place la commande vers les valeurs de processus à l'intérieur du moule, ce qui permet un contrôle qui limite la variation causée par la variation inhérente du matériau.

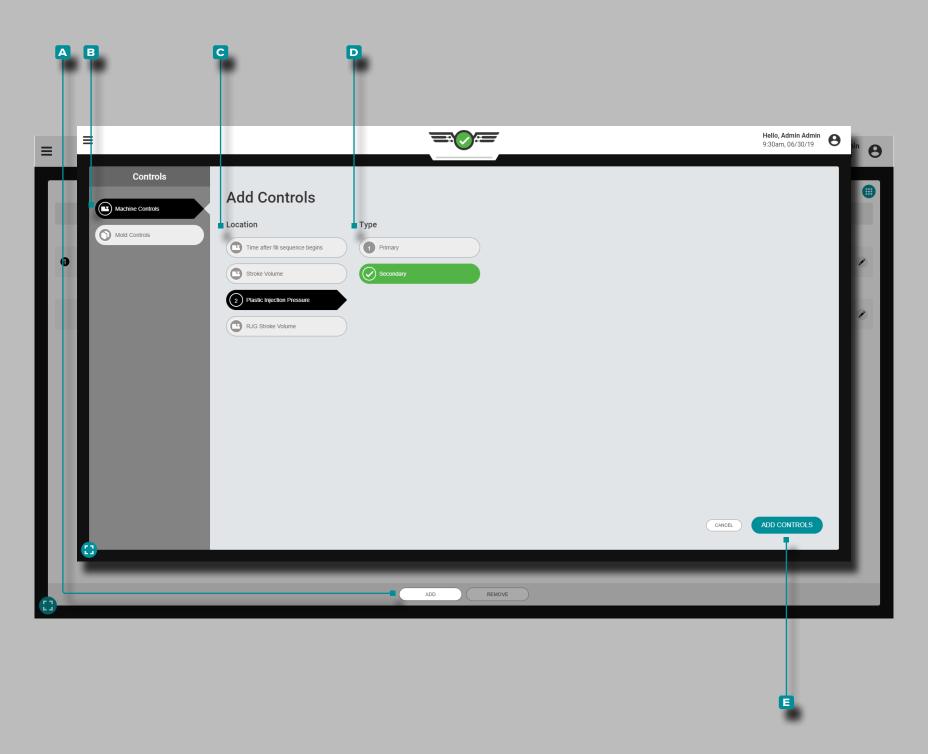
Pour utiliser la commande $V \to P$, une sortie d'un module physique OR2-M ou OA1-M-V doit être installée, connectée et avoir été affectée à la commande $\nearrow V \to P$ dans les paramètres de la machine (reportez-vous au CoPilot $^{\text{\tiny TM}}$ Guide d'installation et de configuration du matériel pour les instructions d'installation et «Affectation des Sorties» on page 21 à la page pour des instructions sur l'affectation des sorties de contrôle lors de la configuration).

- (i) **REMARQUE** Le contrôle V→P ne fonctionnera pas si CoPilot Go est actif; est utilisé; reportez-vous à «CoPilot Aller» on page 12 pour plus d'informations sur CoPilot Go.
- ✓ MISE EN GARDE Configurez toujours les points de consigne de sauvegarde sur la machine lorsque vous utilisez l'outil de contrôle V→P; le non-respect de cette consigne entraînera des dommages ou la destruction de l'équipement et des blessures au personnel.

Contrôle

RJG, Inc. recommande d'attribuer à la fois une commande principale et une commande secondaire pour contrôler le transfert $V \to P$ de la machine.

Contrôle Primaire

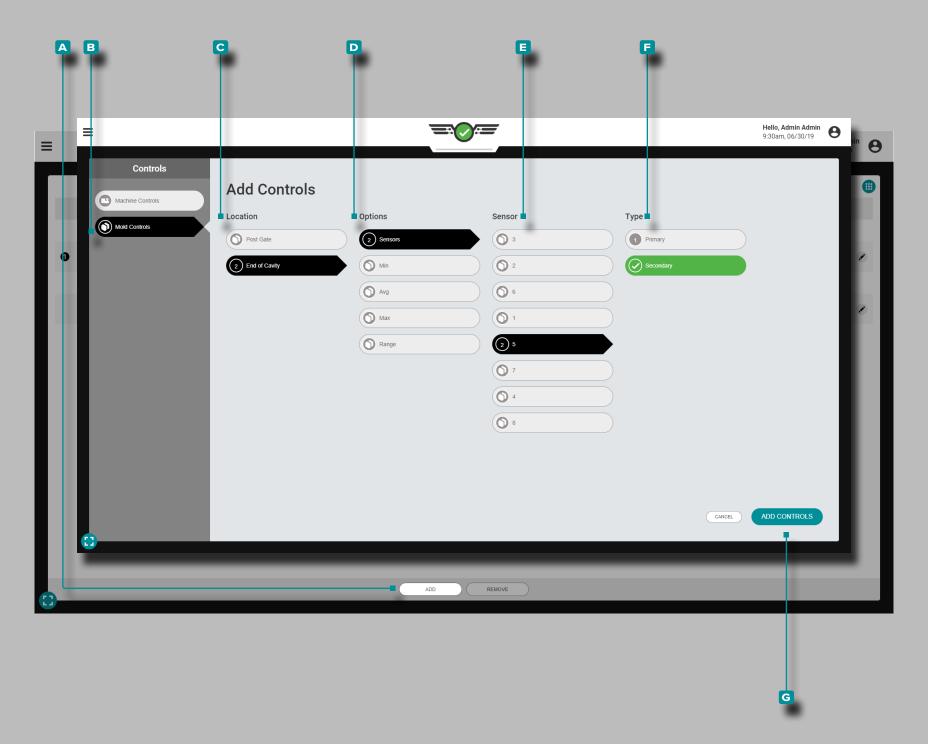

Un A contrôle primaire est le contrôle qui est réglé avec l'intention qu'il soit le point de consigne de contrôle de transfert principal.

Contrôle Secondaires

Une **B** commande secondaire est la commande qui est établie avec l'intention que si la commande primaire n'est pas atteinte, la commande secondaire fournira le signal de transfert comme une sauvegarde.

La commande $V \to P$ transférera la machine en fonction du point de consigne principal atteint en premier; toute commande activée mais n'ayant pas atteint son point de consigne en premier deviendra la commande de secours. Si aucune des commandes primaires n'est atteinte, les commandes se déplacent vers les commandes secondaires qui fonctionneront comme commandes primaires dans l'ordre des points de consigne atteints.

La commande / consigne qui a déclenché le transfert de la machine lors du dernier cycle est indiquée sur le widget VP Control par un conuméro encerclé à côté de la commande sur le côté gauche du widget.


Ajouter des Commandes $V \to P$

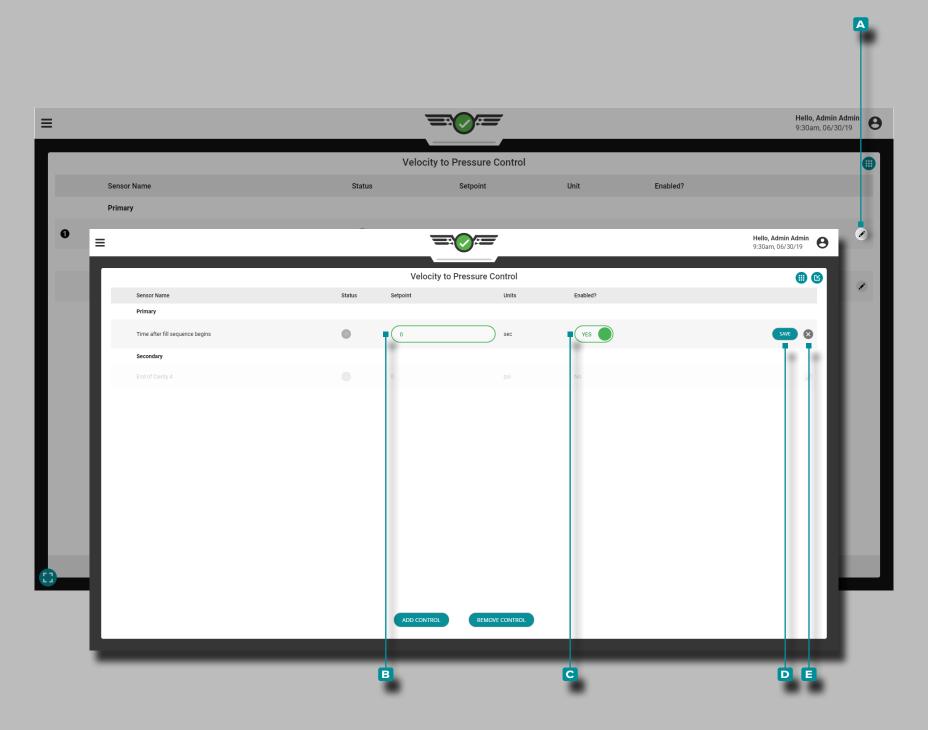
Ajoutez des Commandes à Partir du Widget $V \rightarrow P$ Pendant qu'Une Tâche est en Cours d'Exécution.

Contrôle de Machine

Appuyez ♣ sur le bouton ▲ AJOUTER, puis sur B Commandes de la machine pour afficher les commandes sélectionnables de la machine; appuyez ♣ sur C l'emplacement et le Dtype souhaités, puis appuyez ♣ sur le bouton B AJOUTER DES COMMANDES pour revenir au widget V→P.

Le contrôle ajouté apparaîtra sur le widget $V \to P$ mais n'est pas actif tant qu'un point de consigne n'est pas attribué; Reportez-vous à «Modifier ou supprimer des commandes $V \boxtimes P$ » on page 123.

Ajouter des Commandes V → P (a continué)

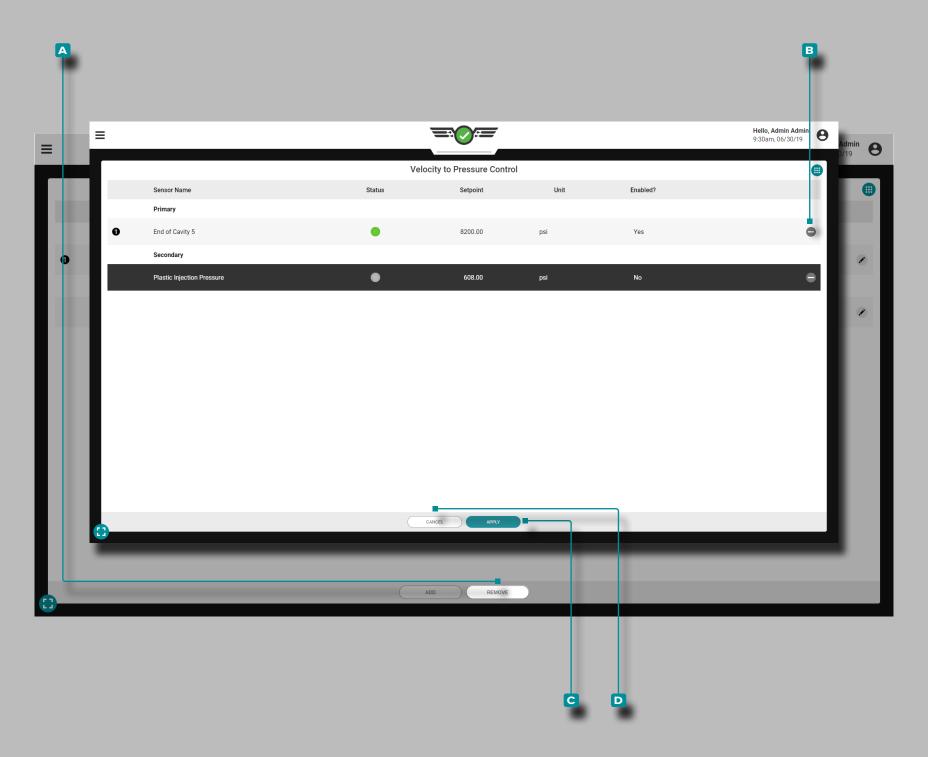

Contrôles du Moule

Les commandes de moule sont basées sur les pressions de cavité fournies par les capteurs de pression de cavité dans le moule. Les contrôles de moule pour $V \to P$ peuvent être basés sur les éléments suivants:

- Capteurs individuels avec un point de consigne de pression dans la cavité auquel le transfert se produira, réglé comme commande primaire ou secondaire;
- 2. Valeur de consigne minimale ou minimale du seuil de pression dans la cavité qui doit être atteinte par tous les types de capteurs sélectionnés, définie comme commande primaire ou secondaire;
- **3.** Plage, un point de consigne auquel le transfert se produira sur la base d'un calcul de plage de tous les capteurs de pression de cavité sélectionnés, réglé comme commande primaire ou secondaire;
- **4.** Valeur de consigne de seuil de pression de cavité maximale ou maximale qui doit être atteinte par tous les types de capteurs sélectionnés, définie comme commande primaire ou secondaire
- 5. Moy, ou un point de consigne auquel le transfert se produira en fonction de la moyenne de tous les types de capteurs de pression de cavité sélectionnés, défini comme commande primaire ou secondaire.

Appuyez ♣ sur le bouton ♠ AJOUTER, puis sur ♠ Contrôles de moule pour afficher les contrôles de moule sélectionnables; appuyez ♣ sur ᢏ l'emplacement et les ⊅ options souhaités, puis sur le € capteur et / ou le ♠ type selon les options choisies. Lorsque vous avez terminé, appuyez ♣ sur le bouton ᢏ AJOUTER DES COMMANDES pour revenir au widget V → P.

Le contrôle ajouté apparaîtra sur le widget $V \to P$ mais n'est pas actif tant qu'un point de consigne n'est pas attribué; Reportez-vous à «Modifier ou supprimer des commandes $V \boxtimes P$ » on page 123.



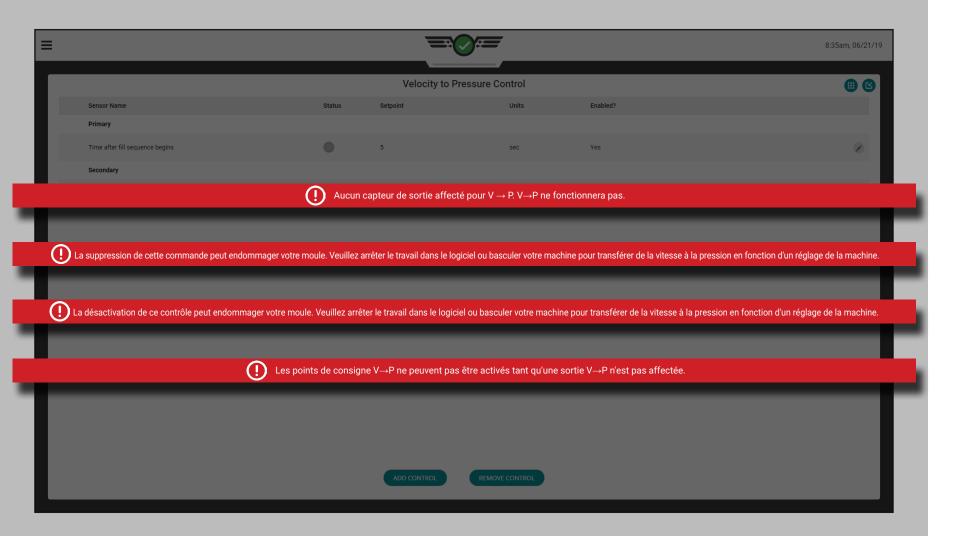
Modifier ou supprimer des commandes $V \rightarrow P$

Une fois qu'un contrôle est ajouté, il peut être activé, modifié ou supprimé sur le widget $V \rightarrow P$.

Activer ou Modifier les Commandes $V \rightarrow P$

Appuyez ♣ sur le bouton ▲ Modifier à côté du contrôle à activer ou modifier, puis appuyez ♣ sur le ➡ champ de consigne pour entrer un nouveau point de consigne; appuyez ♣ sur C Activé? curseur pour activer ou désactiver le contrôle. Lorsque vous avez terminé, appuyez ♣ sur le bouton ➡ ENREGISTRER pour enregistrer les modifications et revenir au widget V → P; ou appuyez ♣ sur le bouton de ➡ sortie pour annuler les modifications.

Modifier ou Supprimer des Commandes V → P (a continué)

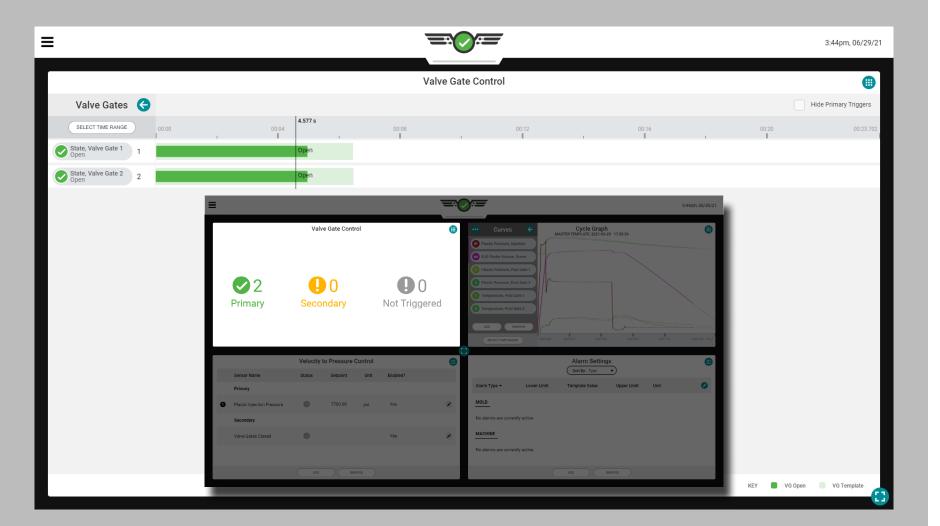

Supprimer des Commandes $V \rightarrow P$

Appuyez \clubsuit sur le bouton \blacktriangle SUPPRIMER, puis appuyez \clubsuit sur le (s) bouton (s) de \blacksquare suppression à côté du ou des contrôles à supprimer. Lorsque vous avez terminé, appuyez \clubsuit sur le bouton \blacksquare APPLIQUER pour enregistrer les modifications et revenir au widget $V \to P$; Sinon, appuyez \clubsuit sur le bouton \blacksquare ANNULER pour annuler les modifications.

Si un contrôle est supprimé, une notification d'avertissement s'affiche, demandant à l'utilisateur de confirmer la suppression du contrôle.

Si une seule commande $V \to P$ existe, elle ne peut pas être supprimée sans arrêter le travail.

✓ MISE EN GARDE NE PAS retirer la seule commande V→P à moins que des modifications ne soient apportées pour garantir que la machine passe de la vitesse à la pression en fonction d'un réglage de la machine. Le non-respect de cette consigne entraînera des dommages ou la destruction de l'équipement et des blessures au personnel.

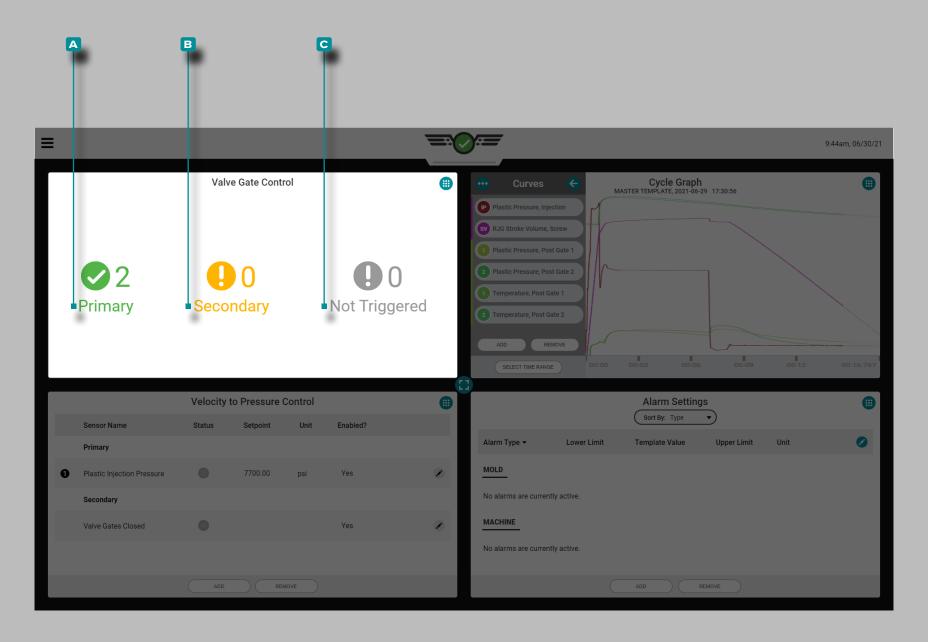

Erreurs V→P

Si une commande de pression de la cavité est définie pour le temps de remplissage de la cavité et les emplacements EOC et que le seuil de 1 000 psi n'est pas détecté à EOC, une notification d'erreur s'affiche pour alerter l'utilisateur du problème.

Lorsqu'une sortie V→P affectée perd la communication avec le matériel physique auquel elle est connectée, un message d'erreur s'affiche pour informer l'utilisateur que la sortie a été interrompue et que la commande ne fonctionnera pas correctement.

Lorsque le matériel physique d'une sortie affectée est déconnecté au début du travail, un message d'erreur s'affiche pour informer l'utilisateur que la sortie n'est plus disponible et que la commande est désactivée.

Lorsqu'un travail est en cours d'exécution et qu'un point de consigne dont le capteur entre dans un état d'erreur ou se déconnecte, un message d'erreur s'affiche pour signaler que la sortie a été interrompue et que la commande ne fonctionnera pas.


Contrôle d'Obturateur de Seuil

L'outil de contrôle d'obturateur de seuil (facultatif—si autorisé) est conçu pour ouvrir les obturateurs de seuil lors d'événements spécifiques au cours du cycle, puis refermer les obturateurs de seuil lors d'autres événements. Utilisez l'ensemble d'outils de commande d'obturateur de seuil pour les événements d'ouverture et de fermeture à l'aide du démarrage de l'injection plus untempsretard, début de moule fermer , cavitépression , température ou course RJGle volume . L'utilisation du contrôle d'obturateur de seuil peut réduire considérablement les effets des changements de matériaux.

Cet outil permet également le transfert de la machine de vitesse àpression (maintenir) une fois toutes les vannes fermées. Cela vous permet de laisser tomberpression et commencer la récupération (visser courir) tôt, ce qui peut soit raccourcir le cycletemps ou améliorer le mélange et faire fondre (si le refroidissementtemps est toujours nécessaire).

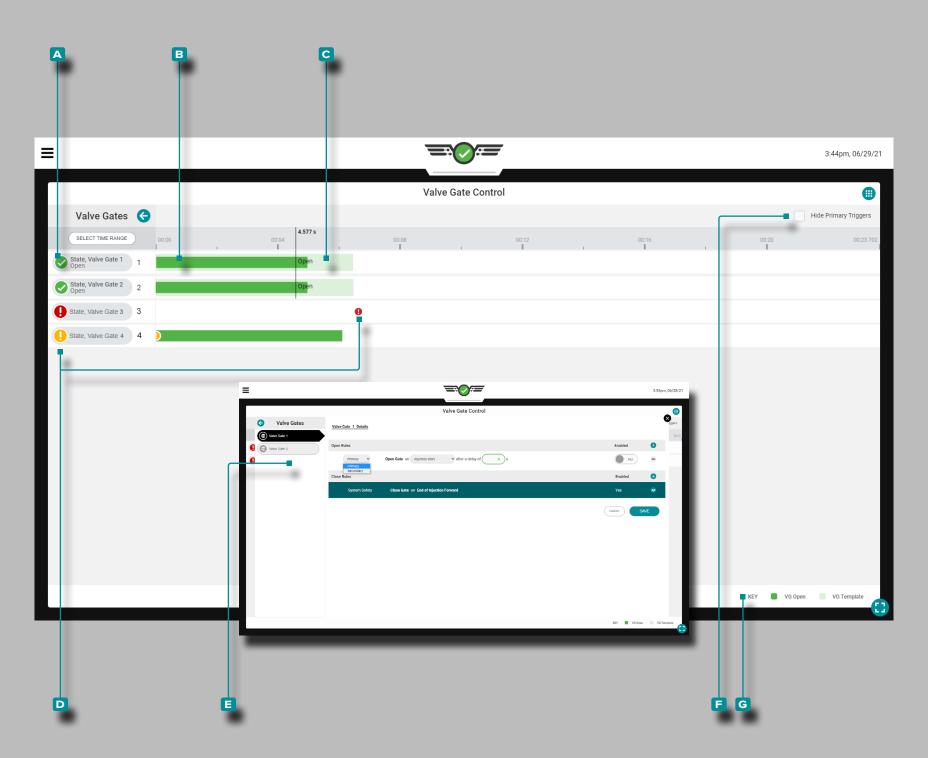
Afin d'utiliser la commande d'obturateur de seuil, une sortie d'un module physique OR2-M ou OA1-MV doit être installée, connectée et avoir été affectée dans les paramètres du moule (consultez le Guide d'installation et de configuration du matériel CoPilot™ pour les instructions d'installation. , et «Sorties Moule» on page 37 pour obtenir des instructions sur l'affectation des sorties dans la configuration).

- (i) **REMARQUE** Le contrôle de la vanne ne fonctionnera pas si CoPilot Aller est actif ; est utilisé ; reportez-vous à «CoPilot Aller» on page 12 pour plus d'informations sur CoPilot Aller.
- ✓ MISE EN GARDE Configurez toujours des points de consigne de secours sur la machine lorsque vous utilisez l'outil de commande d'obturateur de seuil ; le non-respect entraînera des dommages ou la destruction de l'équipement et des blessures au personnel.

Écran de vue en quart de commande d'obturateur de seuil du tableau de bord des tâches

Lorsqu'il est affiché sur le tableau de bord des tâches avec trois autres écrans, l'écran de vue quart de commande d'obturateur de seuil affiche une vue d'information simple des obturateurs de seuil actuels, y compris un nombre d'obturateurs de seuil primaires, secondaires et non déclenchés.

Primaire


Une porte qui s'est ouverte ET fermée sur une règle principale s'affichera comme un (1) compte A principal.

Secondaire

Une porte qui s'ouvre OU se ferme sur une règle secondaire s'affichera comme un (1) compte **B** secondaire.

Non Déclenché

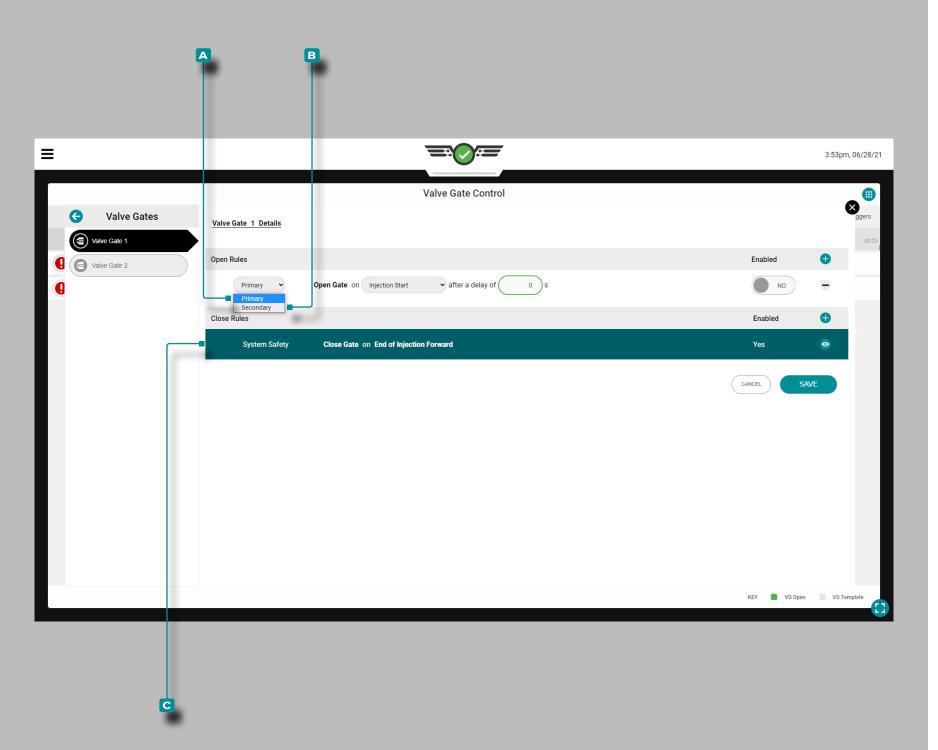

Un portail qui ne s'ouvre pas AND/OR ne se ferme pas s'affichera comme un (1) décompte comme un déclenché.

Tableau de Bord des Tâches Écran Plein Ecran

Lorsqu'il est affiché sur le tableau de bord des tâches en plein écran, le widget de contrôle d'obturateur de seuil affiche les obturateurs de seuil actuels dans une vue de type diagramme de Gantt comprenant les éléments suivants :

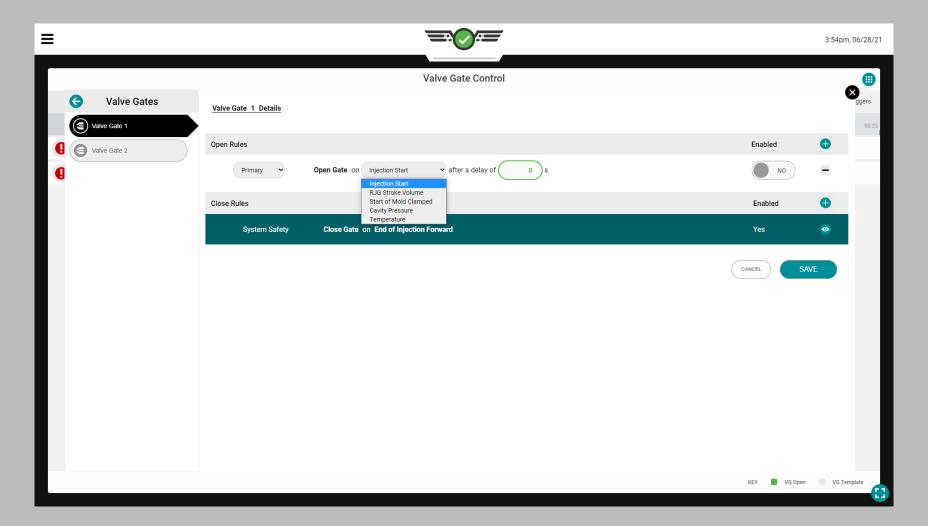
- A: étiquette de nom de porte et de cavité,
- **B**: ouvrir et fermer réel,
- c: ouvrir et fermer le modèle de processus,
- D: icônes d'événements secondaires et non déclenchés,
- E: afficher ou modifier les paramètres de règle d'obturateur de seuil,
- **:** masquer l'obturateur de seuil qui s'est déclenché sur le bouton de règle de contrôle principal, et
- G: Clé de couleur.

Configuration du Contrôle d'Obturateur de Seuil

Une fois qu'un travail avec des sorties d'obturateur de seuil assignées est démarré, le widget Contrôle d'obturateur de seuil apparaîtra sur le tableau de bord du travail. Appuyez sur le widget pour afficher et ajouter des commandes.

RJG, Inc. recommande qu'une commande primaire et une commande secondaire soient affectées à la commande d'obturateur de seuil.

Contrôle primaire


Un A contrôle primaire est le contrôle qui est réglé avec l'intention d'être le point de consigne de contrôle principal.

Contrôle secondaires

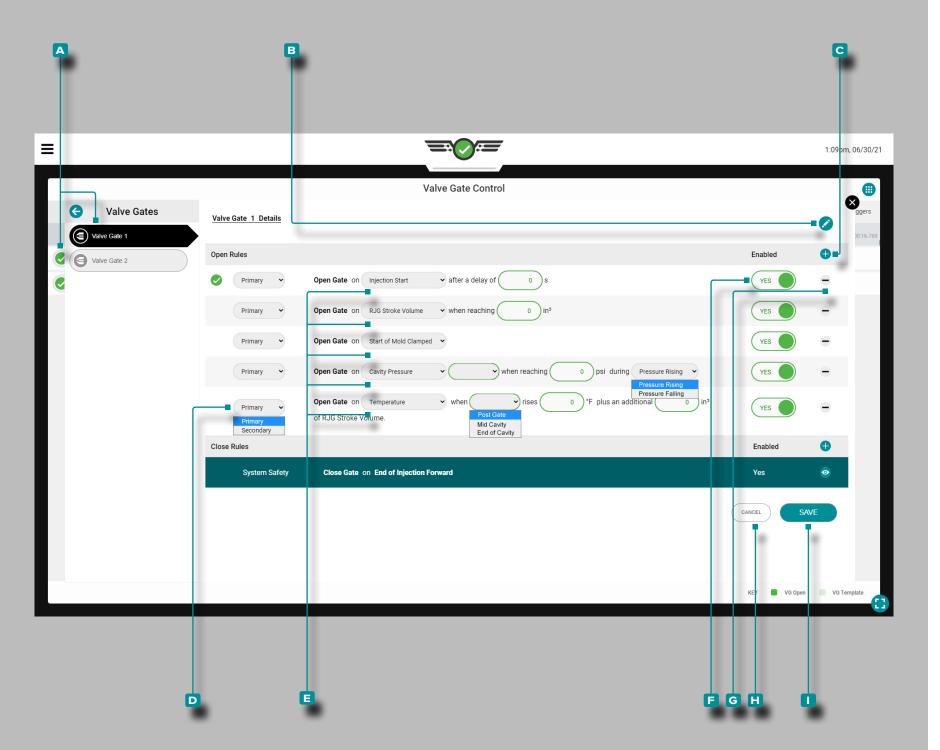
Un **B** contrôle secondaire est le contrôle qui est réglé avec l'intention que si le contrôle primaire n'est pas atteint, le contrôle secondaire fournira le signal comme sauvegarde.

La commande d'obturateur ouvrira ou fermera la ou les vannes en fonction du point de consigne primaire atteint en premier; tout contrôle qui est activé mais n'a pas atteint son point de consigne en premier deviendra le contrôle de secours. Si aucune des commandes primaires n'est atteinte, les commandes se déplacent vers les commandes secondaires qui fonctionneront comme commandes primaires dans l'ordre des points de consigne atteints.

Un c système de contrôle de sécurité intégré fermera la ou les vannes à la fin de l'injection vers l'avant pour éviter d'endommager le moule ou la machine. Ce contrôle ne peut pas être modifié ou supprimé.

Configuration du Contrôle d'Obturateur de seuil (suite)

Commandes à Obturateur de Seuil Ouvertes Il y a cinq (5) événements au cours desquels une porte peut être désignée pour s'ouvrir :


- Ouvert au démarrage de l'injection après un délai de Xsecondes
 Si sélectionné, l'obturateur s'ouvrira au début de l'injection après un délai de 0 à Xsecondes, comme indiqué par le nombre desecondes. Cette fonction peut être utilisée comme secours au cas où le signal de blocage du moule ne s'allumerait pas. Cela peut également être utilisé pour une sorte de "démarrage en marche" dans lequel la machine
- commence à injecter et obtient un certain compactage de la masse fondue avant l'ouverture de la porte.

 Ouvert sur RJG StrokeLe volume
 Si sélectionné, l'obturateur s'ouvrira à lale volume au-dessus de zéro à laquelle l'obturateur est réglé pour s'ouvrir. Zéro est la position duvisser quand levisser le moteur s'arrête. Lele volume augmente à mesure que levisser avance (matériau injecté). Utilisez cette fonction pour équilibrer les outils de
- l'équilibre ou le contrôle séquentiel de la ligne de tricot.

 Ouvrir au début du moule fermer
 Si sélectionné, l'obturateur s'ouvrira lorsque le moulepinces .
 Utilisez cette fonction pour préchauffer les tiges de soupape dans les applications en polycarbonate.

la famille qui ont des cavités radicalement différentes, pour

- Ouvrir sur la cavitéPression
 Si sélectionné, l'obturateur s'ouvrira au niveau de la cavité saisie par l'utilisateurpression du capteur sélectionné pendant-pression montant oupression tombant, tel que sélectionné par l'utilisateur. Utilisez cette fonction pour le contrôle séquentiel de la ligne de tricot.
- Ouvrir sur élévation de température Si sélectionné, l'obturateur s'ouvrira à l'élévation de température saisie par l'utilisateur du capteur sélectionné plus unle volume. Le supplémentle volume la valeur saisie est unle volume devisser APRÈS que le front d'écoulement a atteint le capteur—lele volume nombre est l'augmentation dele volume de ce qu'il était lorsque le front d'écoulement a atteint le capteur. Avec le capteur installé dans une position légèrement en amont du moment où la vanne doit s'ouvrir, le volume supplémentaire permet à la vis d'avancer d'un certain volume avant d'ouvrir la vanne. Utilisez cette fonction pour des processus tels que la mousse structurelle ou le matriçage dans lesquels il n'y a pas de pression dans le matériau lorsqu'il passe devant le capteur.

Configuration du Contrôle d'Obturateur de Seuil (suite)

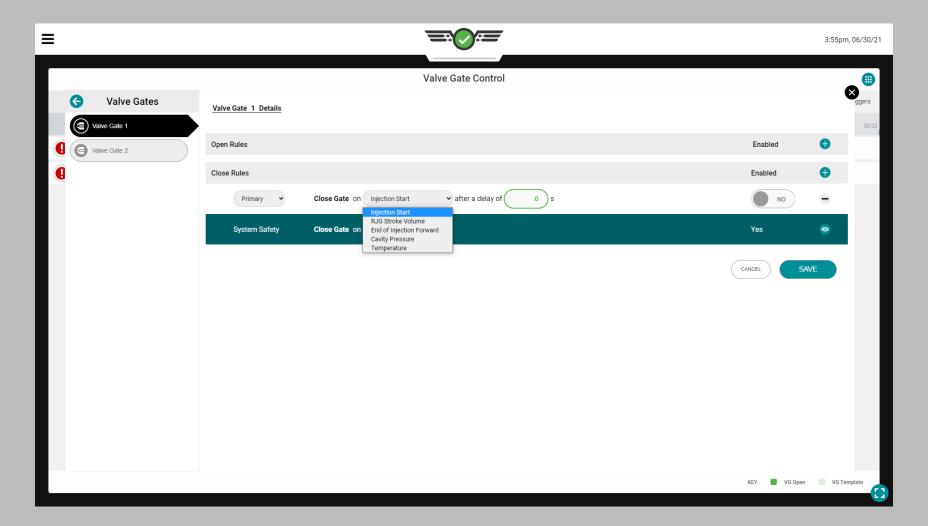
Ajouter, Modifier ou Supprimer un Contrôle d'Obturateur de Seuil Ouvert

Une tâche avec des sorties de moule affectées doit être en cours d'exécution.

Pour ajouter un contrôle d'obturateur de seuil ouvert, ouvrez le widget de contrôle d'obturateur de seuil en plein écran, puis appuyez sur un A obturateur de seuil dans la liste; appuyez sur l' B icône de modification, puis appuyez sur l' c icône d'ajout.

Appuyez sur dans le menu déroulant pour sélectionner le type de contrôle principal ou secondaire.

Appuyez sur dans le menu déroulant pour sélectionner un événement sur lequel ouvrir l'obturateur de seuil; selon la sélection, appuyez pour sélectionner une cavité pression ou capteur de température, appuyez sur un champ et saisissez les informations requises (délai de X secondes, en³ consignes, °F/°C, an/or pression en hausse/pression chute).

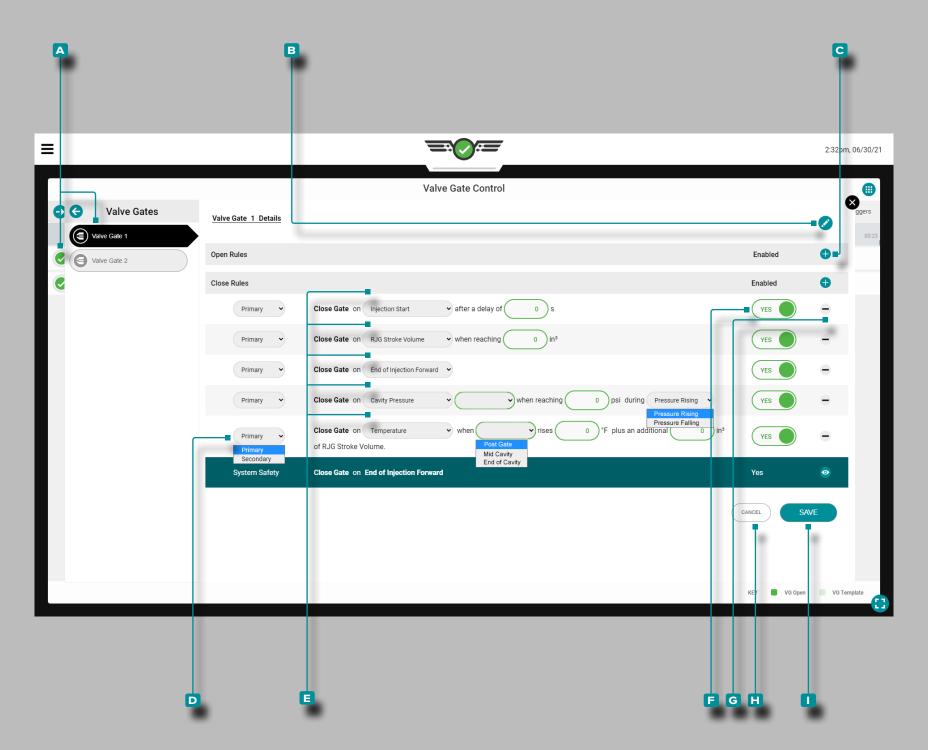

Appuyez sur le F curseur pour OUI activer ou NON désactiver le contrôle.

Appuyez sur l' c icône de suppression pour supprimer le contrôle.

Appuyez sur le bouton ANNULER pour annuler les modifications ou appuyez sur le bouton ENREGISTRER pour enregistrer les modifications.

Toute modification apportée prendra effet au cycle complet suivant.

(i) REMARQUE S'il est sélectionné, "Pressure Rising" ouvrira la porte lorsque la pression au niveau du capteur atteint le point de consigne entré alors que la pression augmente (avant le pic). Si sélectionné, "Pression Falling" ouvrira la porte après le pic lorsque lepression tombe en dessous du point de consigne entré. Si vous utilisez cette méthode et que la pression n'atteint jamais le point de consigne, l'obturateur ne s'ouvrira PAS sous la pression.



Configuration du Contrôle d'Obturateur de seuil (suite)

Fermer les Commandes à Obturateur de Seuil

Il y a cinq (5) événements au cours desquels une porte peut être désignée pour se fermer :

- Fermeture au démarrage de l'injection après un délai de X secondes Si sélectionné, l'obturateur se fermera au début de l'injection après un délai de 0 à X secondes, comme indiqué par le nombre de secondes saisi par l'utilisateur. Cette fonction peut être utilisée comme secours au cas où le signal de blocage du moule ne s'allumerait pas.
- Fermer sur RJG Stroke Volume
 Si sélectionné, l'obturateur se fermera au volume au-dessus
 de zéro auquel l'obturateur est réglé pour se fermer. Zéro est la
 position duvisser quand levisser le moteur s'arrête. Lele volume
 augmente à mesure que levisser avance (matériau injecté).
 Utiliser cette fonction comme contrôle de secours pour le
 contrôle de pression au cas où les pressions ne seraient jamais
 atteintes. Ceci est particulièrement important dans les systèmes à
 cavités alternées où la première cavité doit se fermer pour ouvrir la
 deuxième cavité avant que la machine n'accélère pour sa prochaine
 étape de remplissage.
- Fermer à la fin de l'injection vers l'avant
 Si cette option est sélectionnée, l'obturateur se fermera à la fin de l'injection vers l'avant.
- Fermer à la pression de la cavité Si cette option est sélectionnée, l'obturateur se fermera à la pression de la cavité saisie par l'utilisateur du capteur sélectionné pendant la montée ou la chute de la pression, selon la sélection de l'utilisateur. Utilisez cette fonction pour le contrôle séquentiel de la ligne de tricot. Si vous utilisez « Injection », la pression indiquée n'est PAS la pression hydraulique, mais la pression plastique (rapport hydraulique x intensification [ri]). Utiliser la chutepression pour fermer une porte pour une décharge contrôlée après emballage. La « chute de pression » est utile pour une décharge contrôlée après l'emballage afin de réduire la pression et les gradients dimensionnels.
- Fermer en cas d'élévation de températureSi sélectionné, l'obturateur se fermera à l'élévation de température saisie par l'utilisateur du capteur sélectionné plus un volume supplémentaire. Le supplémentle volume la valeur saisie est unle volume devisser APRÈS que le front d'écoulement a atteint le capteur—lele volume nombre est l'augmentation dele volume de ce qu'il était lorsque le front d'écoulement a atteint le capteur. Avec le capteur installé dans une position légèrement en amont du moment où la vanne doit se fermer, le volume supplémentaire permet à la vis d'avancer d'un certain volume avant d'ouvrir la vanne.

Configuration du Contrôle d'Obturateur de Seuil (suite)

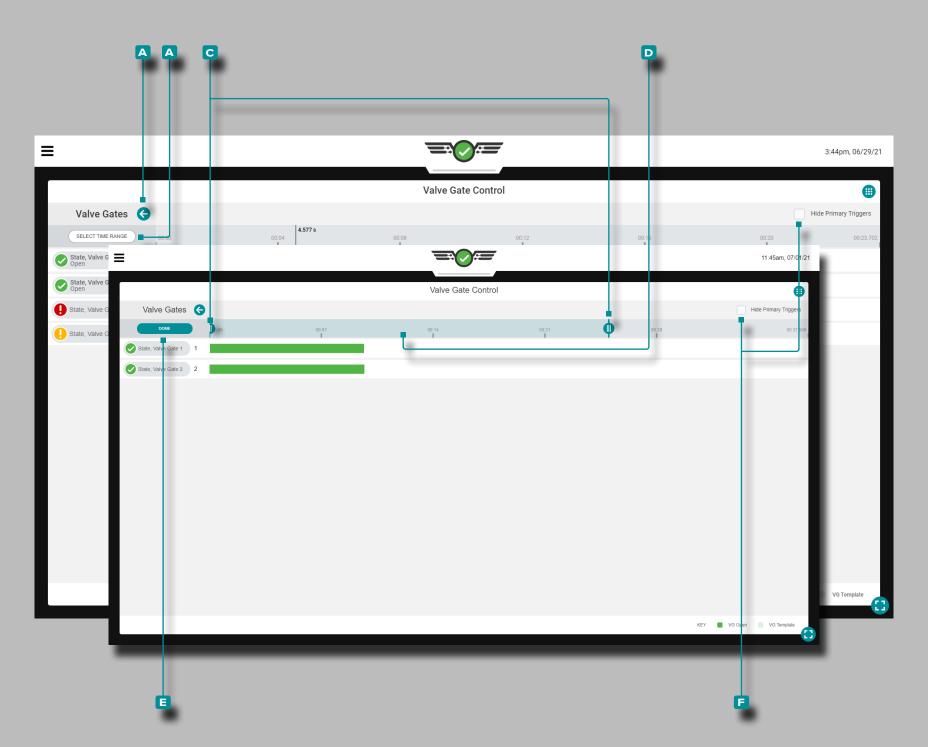
Ajouter, Modifier ou Supprimer un Ccontrôle d'Obturateur de Seuil de Fermeture

Une tâche avec des sorties de moule affectées doit être en cours d'exécution.

Pour ajouter un contrôle d'obturateur de seuil de fermeture, ouvrez le widget de contrôle d'obturateur de seuil en plein écran, puis appuyez sur un A obturateur de seuil dans la liste; appuyez sur l' cicône de modification, puis appuyez sur l' cicône d'ajout.

Appuyez sur dans le menu déroulant pour sélectionner le type de contrôle principal ou secondaire.

Appuyez sur le menu déroulant pour sélectionner un événement sur lequel fermer la vanne d'obturation; selon la sélection, appuyez sur pour sélectionner un capteur de pression ou de température dans la cavité, appuyez sur un champ et saisissez les informations requises (délai de X secondes, point de consigne en³, °F/°C et/ou augmentation/diminution de la pression).


Appuyez sur le le curseur pour OUI activer ou NON désactiver le contrôle.

Appuyez sur l' c icône de suppression pour supprimer le contrôle.

Appuyez sur le bouton H ANNULER pour annuler les modifications ou appuyez sur le bouton ENREGISTRER pour enregistrer les modifications.

Toute modification apportée prendra effet au cycle complet suivant.

(i) REMARQUE Si sélectionné, "Pressure Rising" fermera la porte lorsque la pression au niveau du capteur atteint le point de consigne entré alors que la pression augmente (avant le pic). S'il est sélectionné, « Chute de pression » fermera la porte après le pic lorsque la pression tombe en dessous du point de consigne entré. Si vous utilisez cette méthode et que la pression n'atteint jamais le point de consigne, l'obturateur de seuil NE SE fermera PAS selon la pression. Ceci est utile pour la décharge contrôlée après le compactage, afin de réduire la pression et les gradients dimensionnels.

Outils de Contrôle d'Obturateur de Seuil

Modèles de Processus

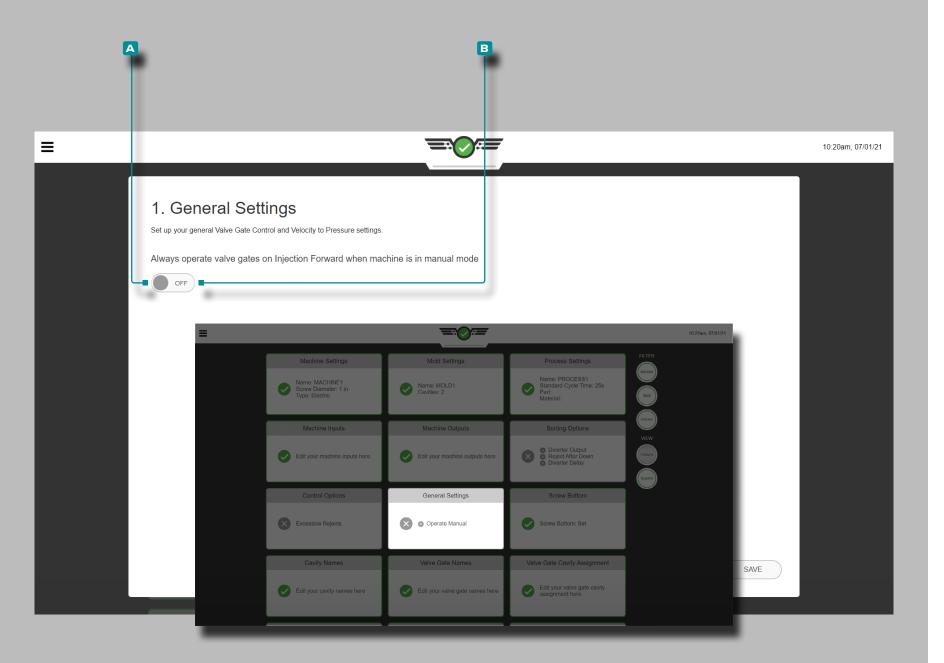
L'outil de contrôle d'obturateur de seuil affiche des modèles de processus avec le processus en cours s'il est sélectionné dans le widget de graphique de cycle. Reportez-vous à «Modèles de Processus de Graphe Cyclique» on page 80 pour les instructions de création et d'affichage des modèles de processus.

Agrandir

Appuyez sur A le bouton fléché pour développer et afficher le menu de commande d'obturateur de seuil, puis appuyez sur le bouton SELECTIONNER LA PLAGE DE TEMPS pour zoomer sur une sélection de temps du graphique de cycle. Appuyez, maintenez et faites glisser un ou les deux curseurs vers l'heure sélectionnée.

Appuyez , maintenez et faites glisser la D barre de sélection de temps pour faire un panoramique à gauche ou à droite sur le graphique cyclique. Appuyez sur le bouton E TERMINÉ pour appliquer les modifications.

Agrandir

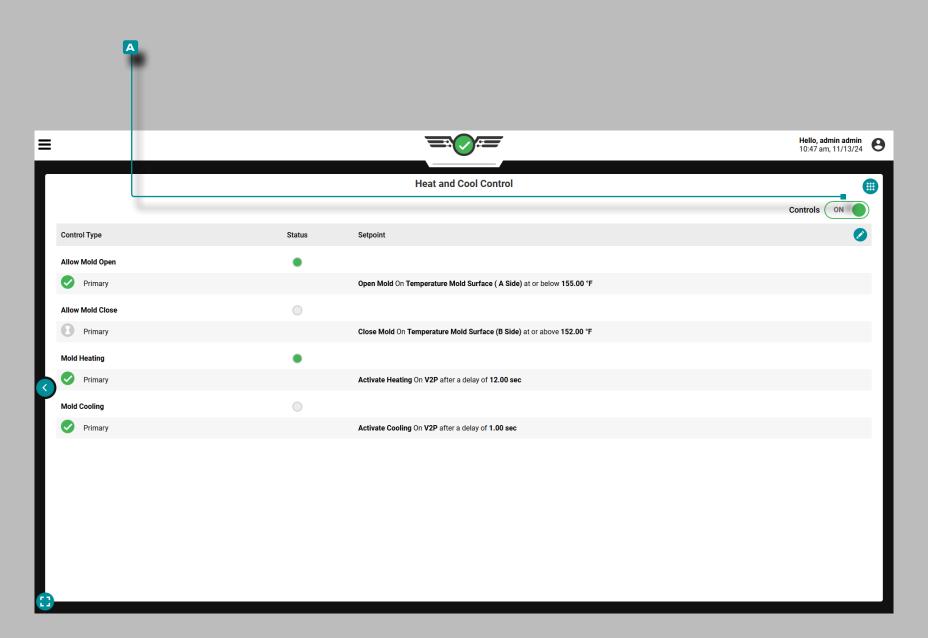

Appuyez sur le bouton SÉLECTIONNER LA PLAGE DE TEMPS pour zoomer sur une sélection de temps du graphique du cycle, puis appuyez , maintenez et faites glisser l'un ou les deux curseurs vers l'heure sélectionnée. Appuyez sur le bouton TERMINÉ pour appliquer les modifications.

Panoramique

Appuyez , maintenezet faites glisser sur le graphique d'ouverture/fermeture de l'obturateur de seuil pour effectuer un panoramique vers la gauche ou la droite à tout moment.

Masquer les Principaux Eléments Déclencheurs

Appuyez sur la la la case à cocher MASQUER LES DÉCLEN-CHEURS PRINCIPAUX pour masquer ou afficher les déclencheurs d'ouverture et de fermeture de l'obturateur de seuil principal.


Réglages Généraux du Contrôle d'Obturateur de Seuil

Cette option est réservée aux utilisateurs de la commande d'obturateur de seuil.

Pour pouvoir purger à travers le moule et les obturateurs, accédez au tableau de bord, localisez la carte des paramètres généraux et appuyez pour la sélectionner; appuyez sur pour sélectionner allumé afin que les portes s'ouvrent même en mode manuel et laissent passer le matériau; appuyez sur pour sélectionner sélectionner de éteint si cela n'est pas souhaité.

Un signal de séquence machine en manuel doit être connecté et affecté dans la configuration de la machine afin de faire fonctionner les commandes d'obturateur de seuil en mode manuel.

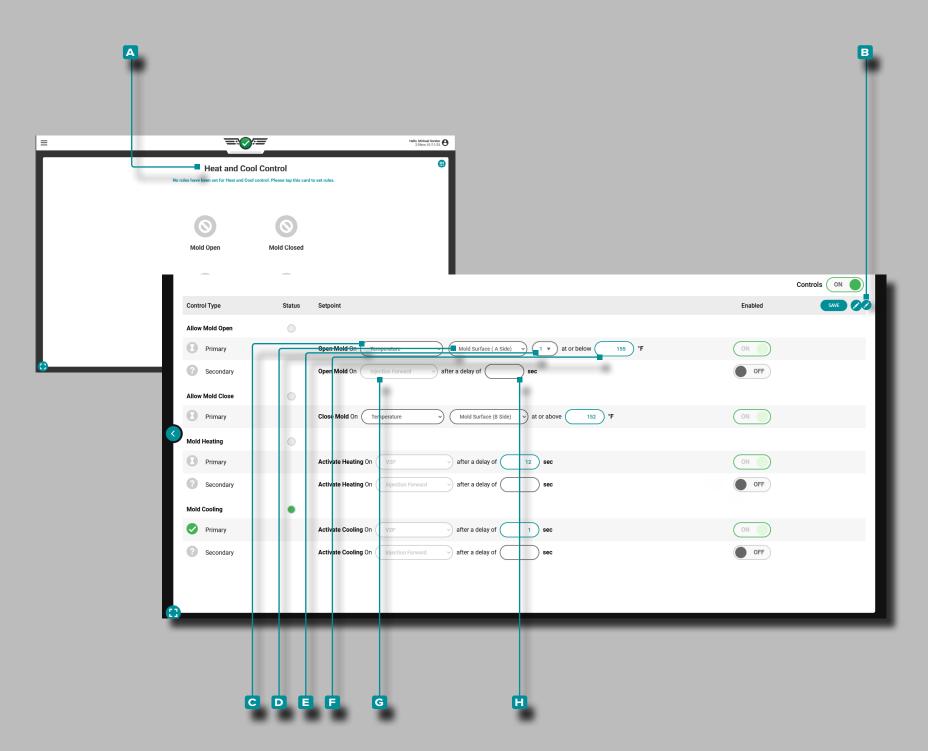
Cette option peut également être configurée pendant les paramètres du processus ; reportez-vous à la section «Réglages Généraux» on page 45.

Chauffage et Refroidissement

Une licence est requise pour utiliser la fonction Chauffage et climatisation.

La fonction Chaleur et Refroidissement est utilisée pour contrôler et maintenir des températures de moule spécifiques, ainsi que pour contrôler le chauffage et le refroidissement des pièces afin d'obtenir la finition souhaitée de la pièce et de réduire le temps de cycle global.

Trois (3) modules de relais à double sortie (OR2-M) sont nécessaires pour envoyer des signaux de sortie de contrôle du système CoPilot à l'IMM; reportez-vous à la page 22 pour configurer les sorties de contrôle requises pour l'ouverture du moule, la fermeture du moule, le chauffage du moule, le refroidissement du moule et V→P.


Le chauffage et le refroidissement du moule sont contrôlés à l'aide de la synchronisation de la séquence de la machine plus un temps spécifié; l'ouverture et la fermeture du moule sont contrôlées à l'aide d'un point de consigne de capteur de température ou d'une synchronisation de séquence de machine après qu'un point de consigne de capteur de température est atteint. Les commandes sont configurées lorsque la machine n'est pas en cycle pour éviter le gaspillage de matériau and/or dommage au moule. La machine peut ensuite être mise en route sans que le chauffage et le refroidissement soient actifs afin de déboguer et de tester le processus.

Les utilisateurs ingénieurs de processus peuvent définir des limites d'alarme sur les alarmes de température composites pour garantir que les pièces sont bonnes et peuvent afficher les déclencheurs de sortie par rapport aux courbes de cycle sur le graphique des états de séquence de la machine du graphique de cycle pour vérifier le bon timing.

Le chauffage et la climatisation ne peuvent pas être utilisés lorsque les entrées facultatives sont actives.

Activation des Commandes de Chauffage et de Refroidissement

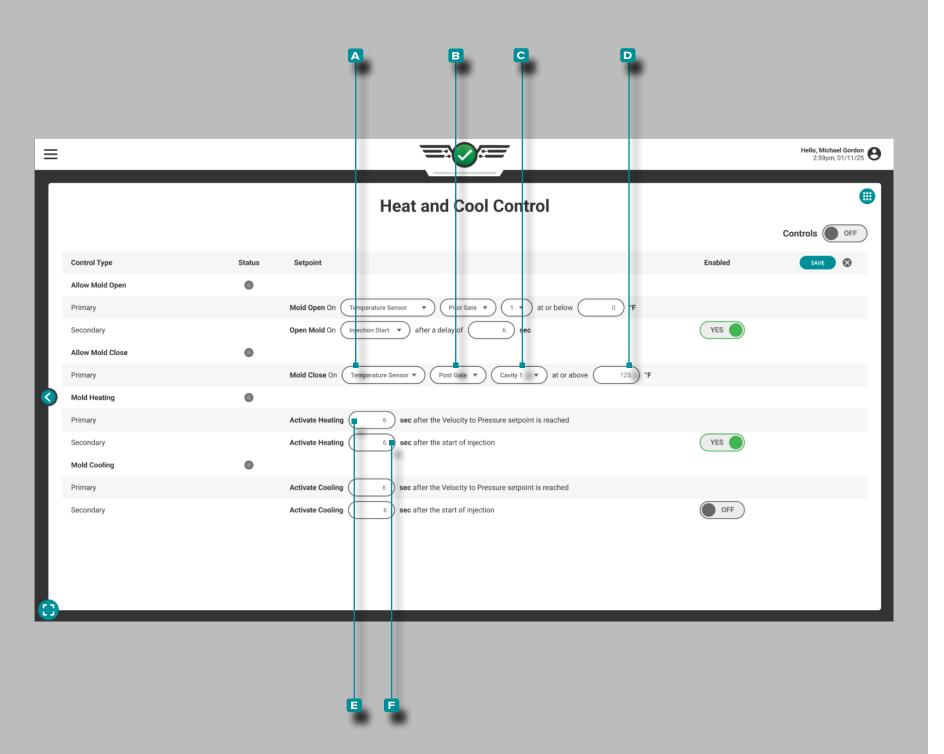
Appuyez sur • le 🔼 curseur pour activer les commandes de chauffage et de refroidissement.

Configuration de Chauffage et de Refroidissement

Sélectionnez le widget Chauffage et refroidissement à afficher sur le tableau de bord des tâches (reportez-vous à «Tableau de Bord» on page 52 pour la personnalisation du tableau de bord des tâches); appuyez sur le A widget de vue quart de contrôle du chauffage et de la climatisationpour l'agrandir en taille réelle.

Les règles d'ouverture, de fermeture, de chauffage et de refroidissement seront ajoutées par défaut au widget de contrôle du chauffage et de la climatisation. L'ingénieur de procédé peut enable/disable uniquement les règles secondaires ; les règles primaires ne peuvent pas être désactivées.

Appuyez sur • le bouton • d'éditionpour modifier les commandes Autoriser l'ouverture du moule, Autoriser la fermeture du moule, Chauffage du moule et Refroidissement du moule; les paramètres de contrôle peuvent être ajustés avant l'activation des commandes.


✓ MISE EN GARDE L'activation de l'injection n'est pas obligatoire, mais il est recommandé de désactiver l'injection dans le cas où l'un des capteurs de contrôle des capteurs Moule ouvert, Moule fermé, Chauffage activé ou Refroidissement activé tombe en panne ou est dans un état d'erreur.

Laisser le Moule Ouvert

Primaire: La sortie « autoriser l'ouverture du moule » est configurée pour s'activer après qu'un capteur de température de cavité atteint la température définie. Secondaire: La sortie « autoriser l'ouverture du moule » est configurée pour s'activer au début de l'injection après avoir atteint une température spécifiée.

Appuyez sur un champ ou un menu déroulant pour régler le capteur de température ou la température composite, D l'emplacement du capteur, E l'ID du capteur (si nécessaire) ou F les degrés Fahrenheit pour le contrôle principal.

Appuyez sur un champ ou sur un menu déroulant pour régler le timingou le délai en secondes pour le contrôle secondaire.

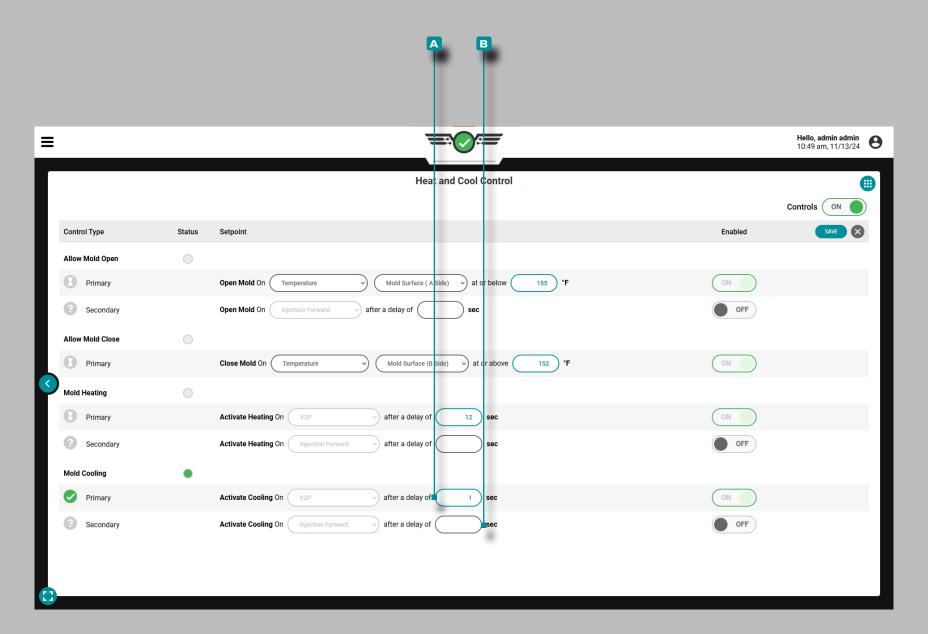
Configuration de Chauffage et de Refroidissement (suite)

Autoriser la Fermeture du Moule

Primaire: la sortie « autoriser la fermeture du moule » est configurée pour s'activer une fois qu'un capteur de température de cavité atteint la température définie.

Appuyez sur un champ ou un menu déroulant pour régler le a capteur de température ou la température composite, l'emplacement du capteur, c l'ID du capteur ou les degrés Fahrenheit pour le contrôle principal.

Chauffage de Moule


Le contrôle de chauffage du moule attribué lors de la configuration de la machine envoie un signal au contrôleur de température du moule pour activer le chauffage du moule lorsque les règles primaires ou secondaires sont remplies.

Primaire: Active la phase de chauffage du régulateur de température du moule une fois que le point de consigne $V \rightarrow P$ est atteint plus un temps défini (x secondes).

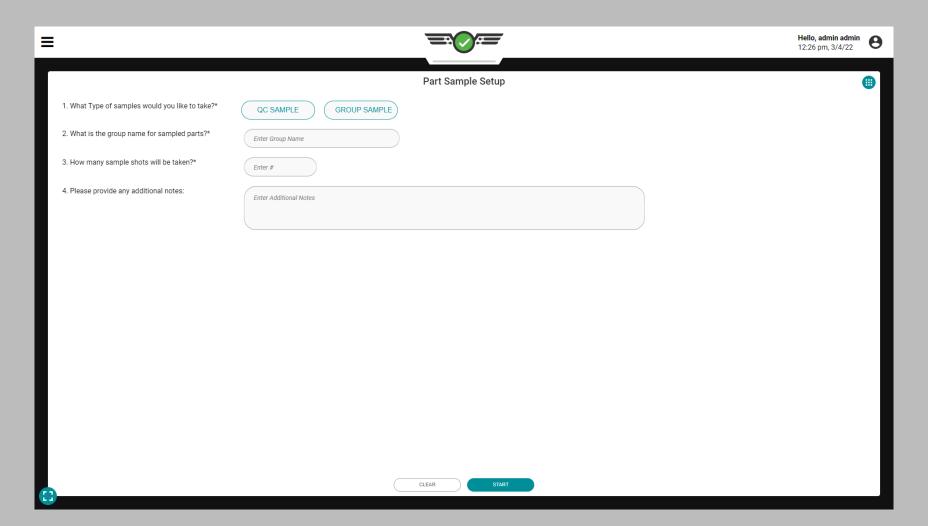
Secondaire: Active la phase de chauffage du contrôleur de température du moule un temps défini après le début de l'injection.

Appuyez sur ♣ le champ pour régler les ► secondes après que le point de consigne V→P soit atteint pour le contrôle principal.

Appuyez sur le champ pour régler les le secondes après le début de l'injection pour le contrôle secondaire.

Configuration de Chauffage et de Refroidissement (suite)

Refroidissement du Moule


Le contrôle de refroidissement du moule attribué lors de la configuration de la machine envoie un signal au contrôleur de température du moule pour activer le refroidissement du moule lorsque les règles primaires ou secondaires sont remplies.

Primaire: active la phase de refroidissement du contrôleur de température du moule une fois que le point de consigne $V \rightarrow P$ est atteint plus un temps défini (x secondes).

Secondaire: active la phase de refroidissement du contrôleur de température du moule un temps défini après le début de l'injection.

Appuyez sur ♣ le champ pour régler les ♠ secondes après que le point de consigne V→P soit atteint pour le contrôle principal.

Appuyez sur le champ pour régler les secondes après le début de l'injection pour le contrôle secondaire.

Échantillonneur de Pièces


Le widget Part Sampler permet aux utilisateurs Process Engineer et QC Engineer de créer des échantillons de pièces afin de saisir et d'afficher les mesures de pièces associées dans le logiciel The Hub.

Versions de Pièces

Pour prélever des échantillons de pièces, une variante de pièce doit être sélectionnée dans le menu déroulant de la tâche (reportez-vous à «Tableau de Bord CoPilot» à la page x). Les variantes de pièces permettent d'associer des pièces issues du même moule mais avec des materials/customers/processes, et pour associer des mesures de pièce à tous les échantillons prélevés de la variante de pièce. Si une variante de pièce n'est pas sélectionnée sur l'encoche du travail, aucune mesure ne pourra être saisie dans le logiciel The Hub pour ces échantillons de pièce ; une notification s'affichera à l'écran pour avertir l'utilisateur.

Types d'Echantillons

Il existe deux types d'échantillons : les échantillons QC et les échantillons de groupe. QC Les échantillons sont généralement prélevés après le développement du processus, lorsqu'une pièce est en production ; Les échantillons de groupe sont généralement utilisés lors du développement de processus avec un nouveau moule.

Tri des Echantillons de Pièces

Si des modifications sont apportées au tri des sorties pendant un échantillon, les modifications prendront effet sur l'échantillon suivant (l'échantillon en cours utilisera les paramètres précédents) ; une notification s'affichera à l'écran pour l'utilisateur.

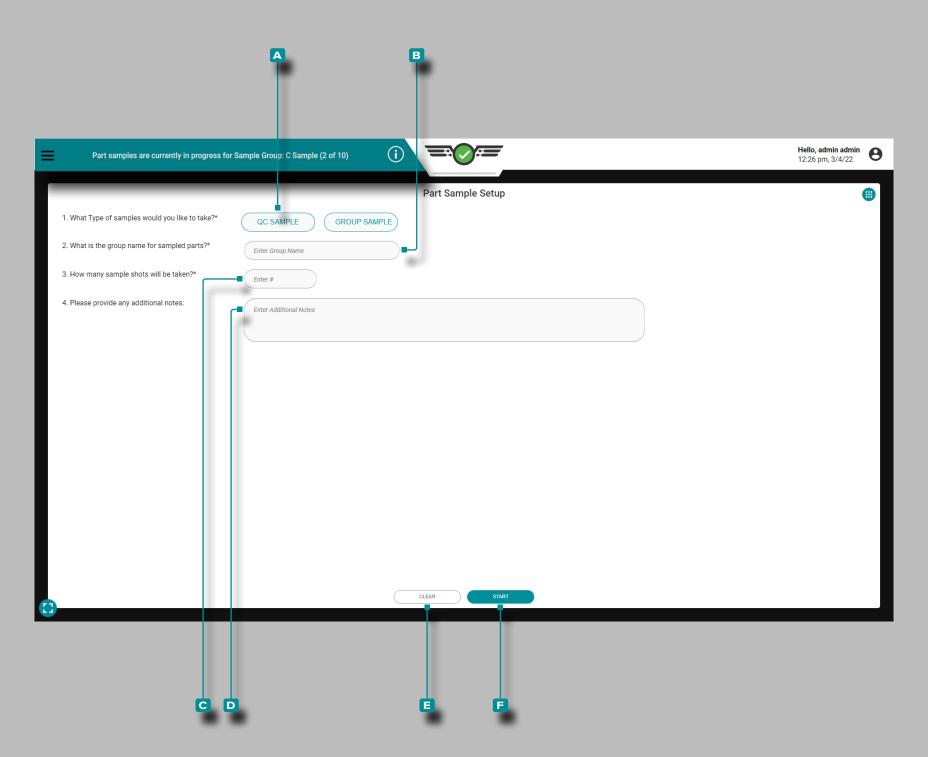
Bon Contrôle ou Contrôle de Rejet

Lors de l'utilisation du widget d'échantillonneur de pièces, les échantillons de pièces seront triés en fonction des paramètres de tri présents sur la carte du tableau de bord des options de tri (pièce bonne ou pièce rejetée).

Rebuts Excessifs

Lorsque le tri est démarré, le tri des rejets excessifs est désactivé jusqu'à ce que l'échantillon soit terminé. Les cycles d'échantillonnage ne seront pas pris en compte dans le nombre de cycles de rejets excessifs, et les comptages de cycles reprendront une fois les échantillons terminés.

Maintenir le Déviateur et la Sortie de Retard du Déviateur


Les paramètres de tri de la sortie du déviateur de maintien et du délai du déviateur ne sont pas affectés pendant les échantillons partiels.

Rejeter Après l'Arrêt

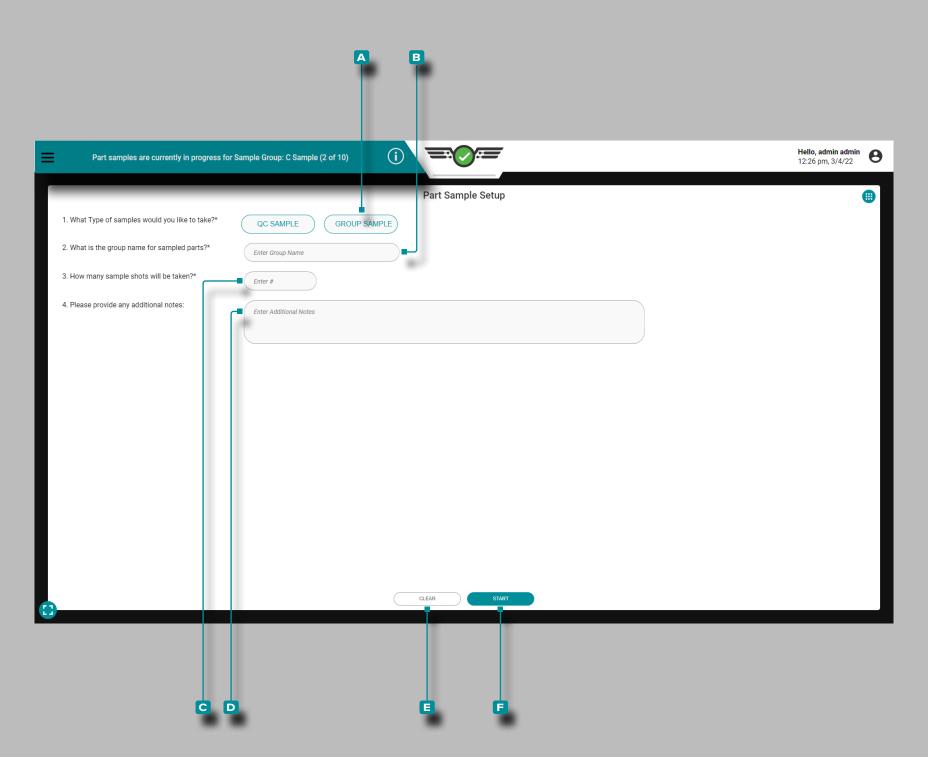
Lorsque le tri est démarré, le rejet après le tri descendant est désactivé jusqu'à ce que l'échantillon soit terminé. Les cycles d'échantillons ne seront pas pris en compte dans le rejet après les décomptes de cycles, et les décomptes de cycles reprendront une fois les échantillons terminés.

Trier la Synchronisation de Sortie

Lors de l'utilisation du widget d'échantillonneur de pièces, les échantillons de pièces seront triés en fonction des paramètres de tri présents sur la carte du tableau de bord Configurer les paramètres de tri pour trier le minutage de sortie. Reportez-vous à «Options de Tri» on page 42 et à page 44.

Prélèvement d'Echantillons de Pièces

Échantillons de CQ


Pour prélever un échantillon partiel, **appuyez sur** • le bouton QC SAMPLE pour sélectionner le type d'échantillon.

Facultativement, appuyez sur le champ pour saisir | le le nombre d'exemples de prises de vue qui seront prises ; si aucun numéro n'est entré, l'échantillonneur de pièces prendra par défaut un échantillon QC.

Facultativement, **appuyez sur** • le champ pour **entrer** ‡ des **pour** le ou les échantillons.

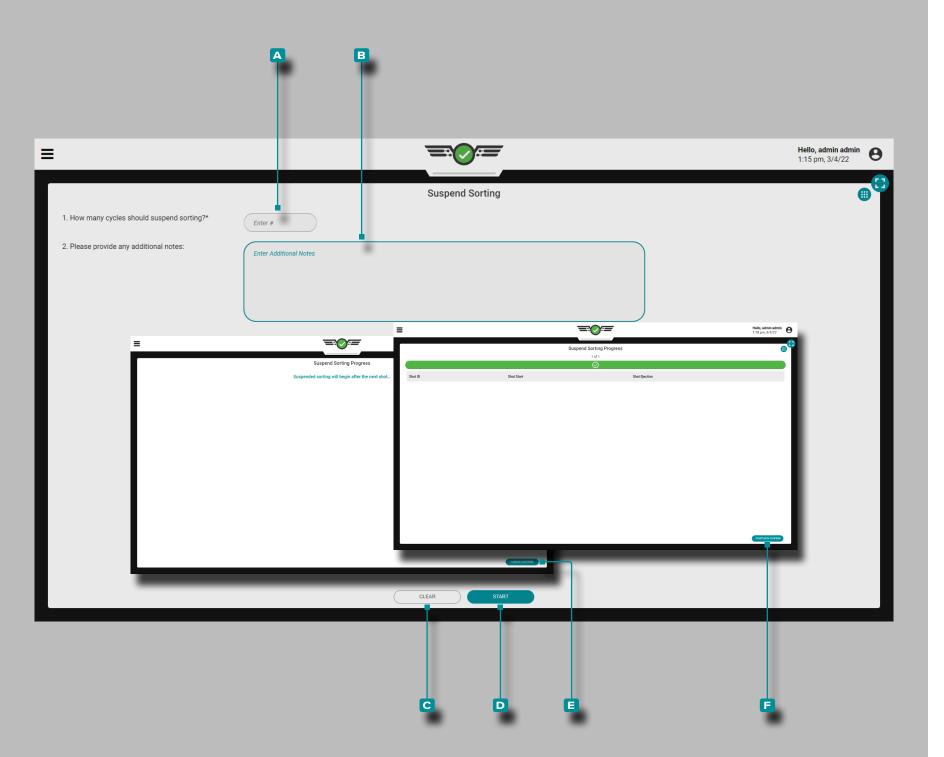
Appuyez sur le bouton E EFFACER pour effacer toutes les informations saisies, ou appuyez sur le bouton DÉMARRER pour commencer à prélever des échantillons de pièces.

Lorsqu'un échantillon partiel est en cours de prélèvement, une notification apparaîtra à l'écran indiquant qu'un échantillon est en cours. La notification d'échantillon de pièce affichera le nom et le nombre du groupe d'échantillons (x sur y) pour permettre à l'utilisateur de visualiser d'autres widgets et paramètres pendant l'exécution d'un échantillon de pièce.

Prélèvement d'Echantillons de Pièces (suite)

Échantillons de Groupe

Pour prélever un échantillon de groupe, **appuyez sur** le bouton EXEMPLE DE GROUPE pour sélectionner le type d'échantillon.


Appuyez ♣ sur le champ pour **saisir** ∦ un ▶ nom de groupe pour les parties échantillonnées.

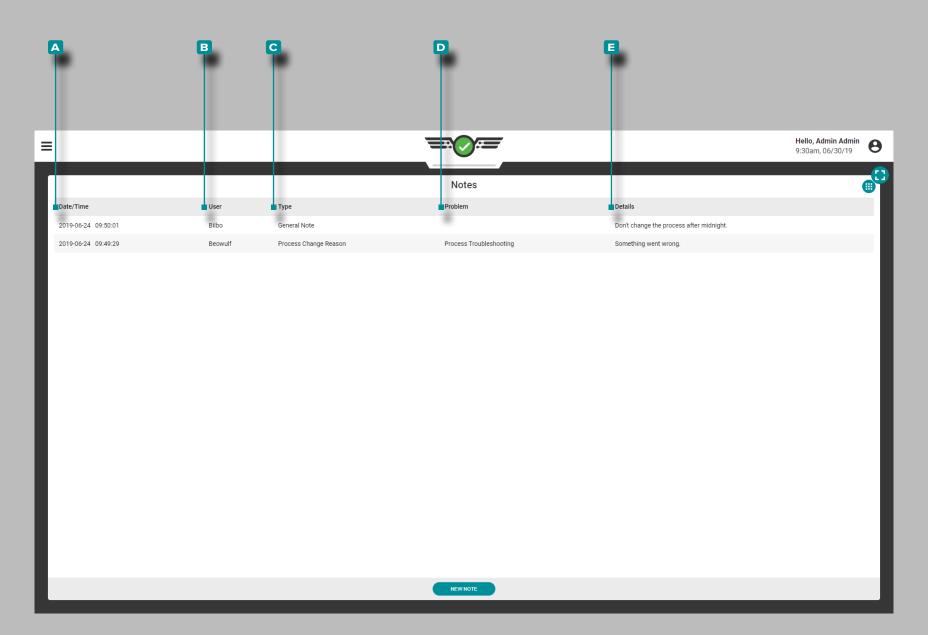
Appuyez ♣ sur le champ pour entrer | le C nombre d'échantillons de prises de vue qui seront prises.

Facultativement, **appuyez sur** le champ pour **entrer** des **pour le ou les échantillons**.

Appuyez ♣ sur le bouton ■ EFFACER pour effacer toutes les informations saisies, ou appuyez ♣ sur le bouton ■ DÉMARRER pour commencer à prélever des échantillons de pièces.

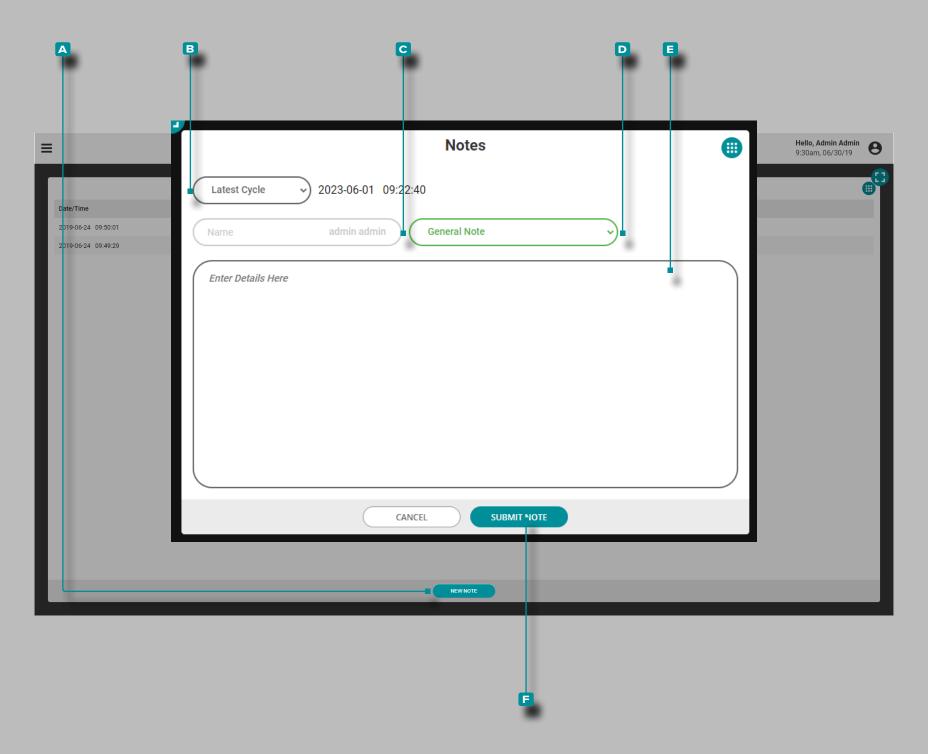
Lorsqu'un échantillon de pièce est en cours de prélèvement, une notification apparaîtra à l'écran indiquant qu'un échantillon est en cours. La notification d'échantillon de pièce affichera le nom et le nombre du groupe d'échantillons (x sur y) pour permettre à l'utilisateur de visualiser d'autres widgets et paramètres pendant l'exécution d'un échantillon de pièce.

Suspendre le Tri


Le widget Suspendre le tri facilite la suspension de tous les paramètres de tri pendant un nombre de cycles spécifié afin d'effectuer des activités de dépannage et de maintenance.

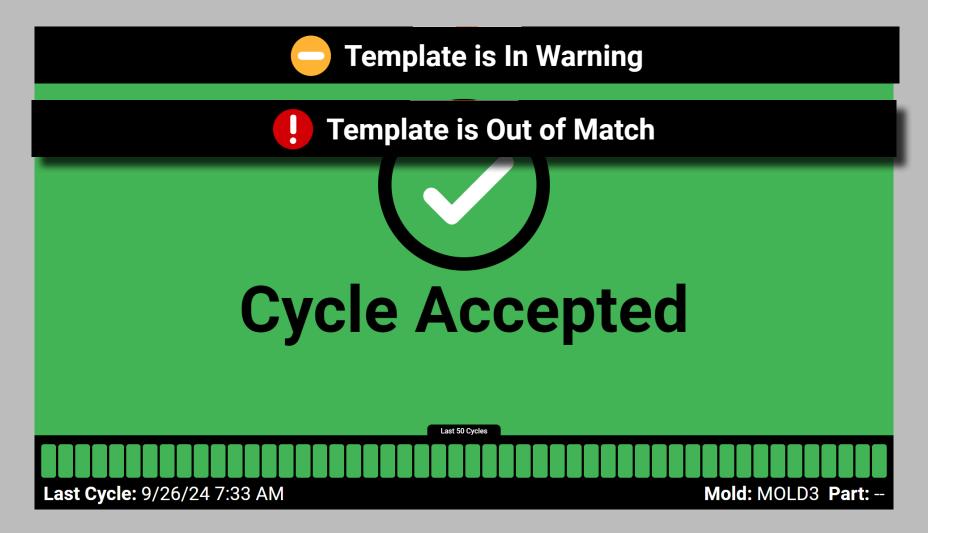
Appuyez pour entrer | le nombre de cycles pour suspendre les cycles. Facultativement, appuyez sur pour entrer des supplémentaires.

Appuyez ♣ sur le bouton € EFFACER pour effacer toute information saisie, ou appuyez ♣ sur le bouton ▶ DÉMARRER pour commencer à suspendre le tri.


Une fois le bouton de démarrage sélectionné, la suspension du tri commencera au prochain coup ; un écran s'affichera informant l'utilisateur de l'état. Pour annuler la suspension du tri pendant son exécution, appuyez sur le bouton ANNULER LA SUSPENSION.

Une fois le nombre de prises de vue spécifié avec le tri suspendu écoulé, un écran s'affichera informant l'utilisateur que la suspension du tri est terminée. Pour suspendre à nouveau le tri, appuyez sur le bouton DÉMARRER NOUVEAU SUSPENDRE pour revenir à la page principale du widget de suspension du tri.

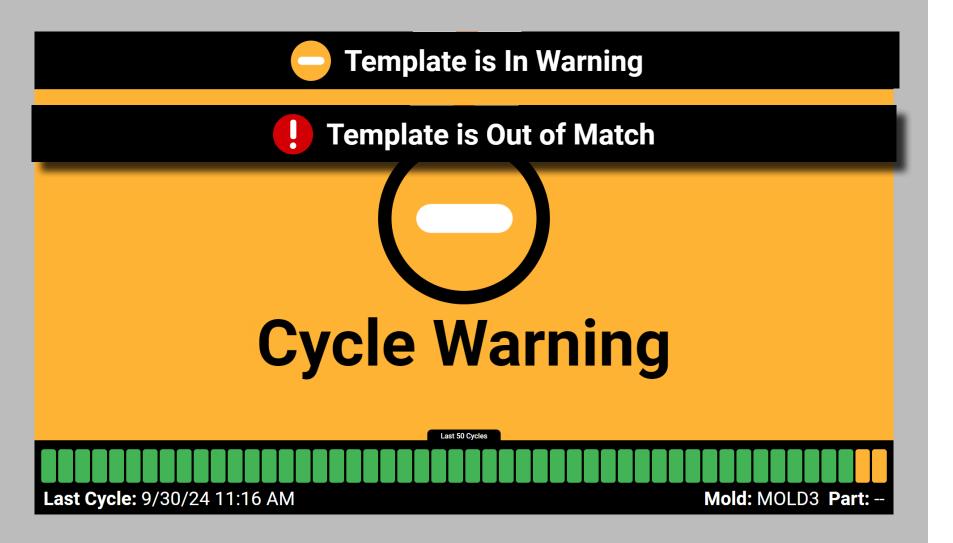
Notes


Afficher toutes les notes entrées sur le widget Notes; les détails de la note incluent la A date / heure de saisie de la note, B l'utilisateur qui a saisi la note, le C type de note, le D problème (si le type de note était une raison de changement de processus) et tous les E détails saisis par l'utilisateur.

Ajouter Une Nouvelle Note

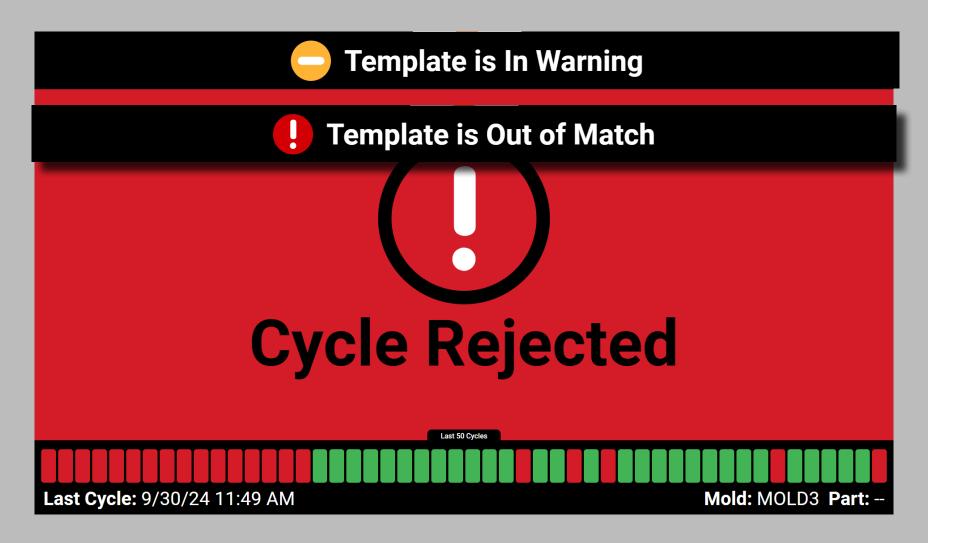
Appuyez sur le bouton A NOUVELLE NOTE. Appuyez sur dans le menu déroulant pour sélectionner le cycle auquel joindre la note—Dernier cycle ou Cycle sélectionné (sur le graphique récapitulatif). Appuyez sur le champ pour saisir un nom d'utilisateur, puis appuyez sur le menu déroulant pour sélectionner un type de note; appuyez le champ pour saisir la note, puis appuyez le bouton soumettre LA NOTE pour enregistrer et fermer l'entrée de note.

Les notes peuvent également être saisies à l'aide de la fonction Saisie de notes; Reportez-vous à «Entrée de Note» on page 159 pour la fonction de saisie de notes et les descriptions des types de notes.

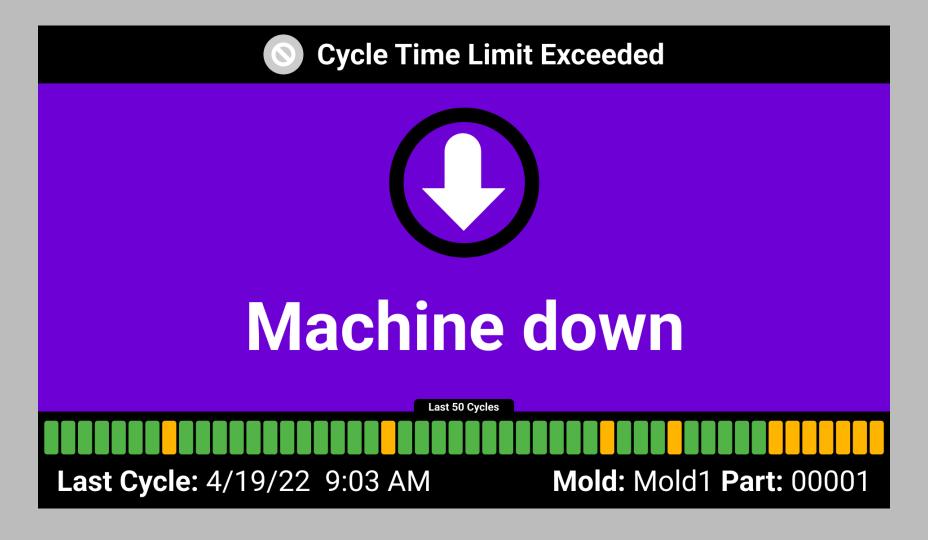


Écrans d'Etat d'Inactivité

Le logiciel CoPilot continue de surveiller les travaux en cours pendant que les utilisateurs sont inactifs sur le logiciel. Si une tâche est en cours d'exécution sur un système CoPilot et qu'aucun utilisateur n'est actif pendant 10 minutes ou plus, les écrans d'état d'inactivité Cycle accepté, Avertissement de cycle, Cycle rejeté ou Machine arrêtée s'affichent pour une vue de référence rapide du processus en cours. Si la correspondance de modèle est utilisée, l'état de correspondance de modèle sera affiché en haut de l'écran d'état d'inactivité. L'écran d'état d'inactivité actuel restera jusqu'à ce qu'un utilisateur interagisse avec le système CoPilot.

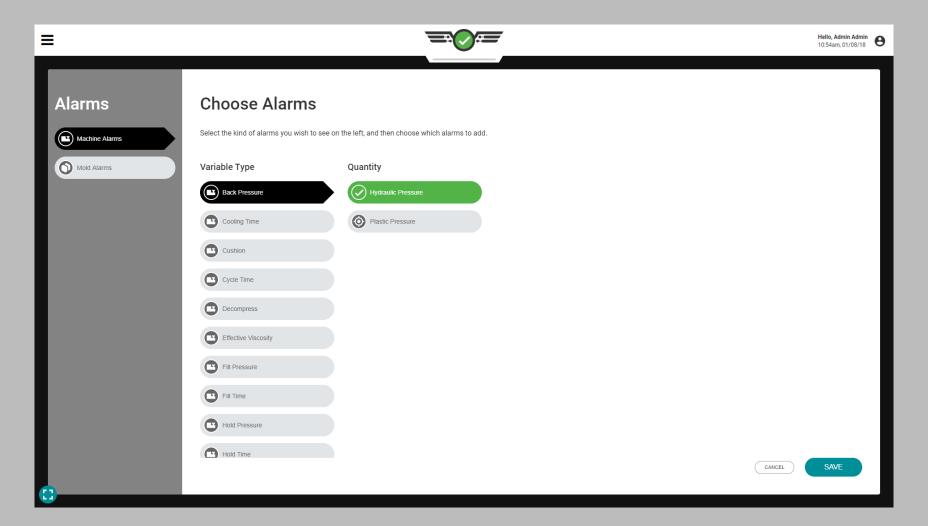

Cycle Accepté

L'écran d'état d'inactivité Cycle accepté comprend la date et l'heure actuelles, le nombre de cycles correspondants au cours des 50 derniers cycles, ainsi que les noms du moule et des pièces.


Avertissement de Cycle

L'écran d'état d'inactivité de l'avertissement de cycle comprend la date et l'heure actuelles, le nombre de cycles avec alarmes d'avertissement au cours des 50 derniers cycles, ainsi que les noms des moules et des pièces.

Cycle Rejeté

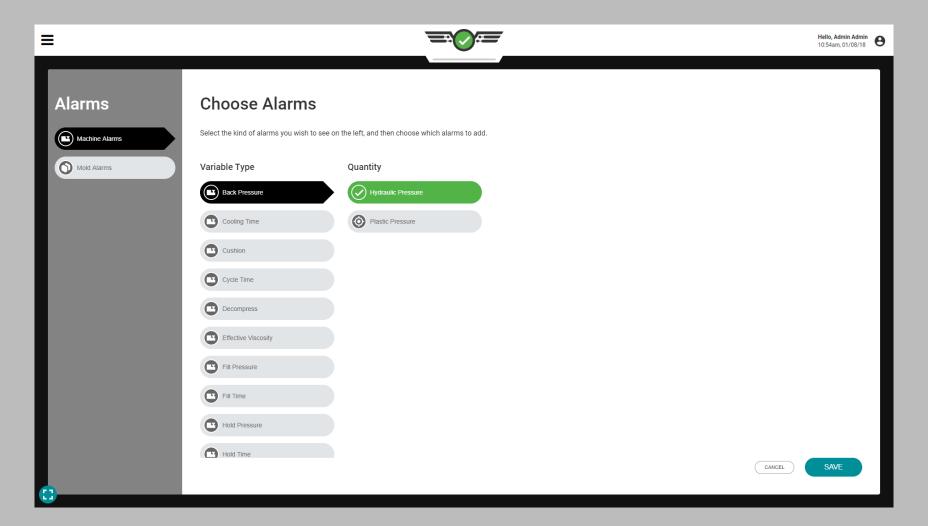

L'écran d'état d'inactivité Cycle rejeté comprend la date et l'heure actuelles, le nombre de cycles incompatibles au cours des 50 derniers cycles, ainsi que les noms du moule et des pièces.

Machine en Panne

L'écran d'état de repos de la machine comprend la date et l'heure actuelles, ainsi que les noms de moule et de pièce.

✓ MISE EN GARDE Lorsque le système CoPilot tombe en panne, les données de la tâche NE SONT PAS ENREGIS-TRÉES.

Normalisation des Valeurs de Processus


Le logiciel CoPilot est capable d'afficher certaines valeurs de processus de la machine surveillées sous forme de positions (pouces) ou de volumes (pouces ³); vitesses (po / s) ou débits volumétriques (po ³ / s); et pression hydraulique (psi) ou pression plastique (ppsi). Chacun de ces ensembles de mesures affiche, premièrement, les mesures de processus de la machine et, deuxièmement, les mesures de processus à partir d'une vue «normalisée».

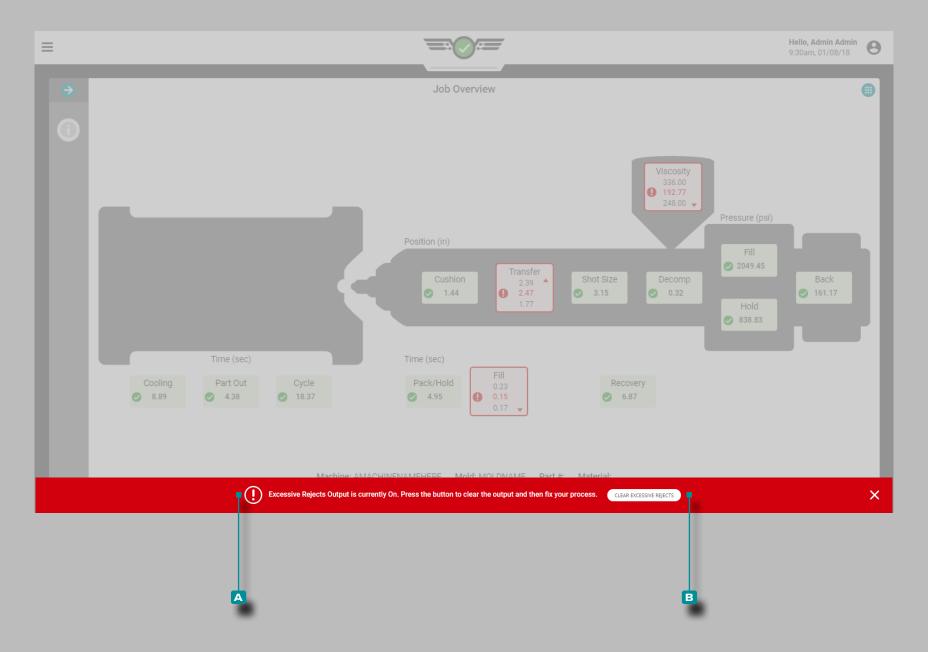
Les valeurs sont «normales» car elles concernent le processus à l'intérieur du moule - le point de vue du plastique - plutôt qu'à l'extérieur. L'affichage des mesures de processus normalisées permet à une installation de fabriquer les mêmes pièces dans un moule sur n'importe quelle machine.

Positions ou Volumes

La quantité de matière (volume) nécessaire pour remplir une cavité dans un moule reste constante (sans compter les inserts). Pour ajuster le volume de matériau entrant dans le moule, la taille de la grenaille de la machine et le transfert doivent être ajustés (positions).

Si le diamètre de la vis est différent sur une machine par rapport à une autre, alors il faudra des valeurs de position de vis différentes sur chaque machine pour mettre le même volume dans le moule. En définissant la quantité de remplissage en termes de volume (en 3) au lieu de positions de machine (en pouces), le processus à l'intérieur du moule peut être configuré de la même manière sur différentes machines.

Vitesses ou Flux Volumétriques

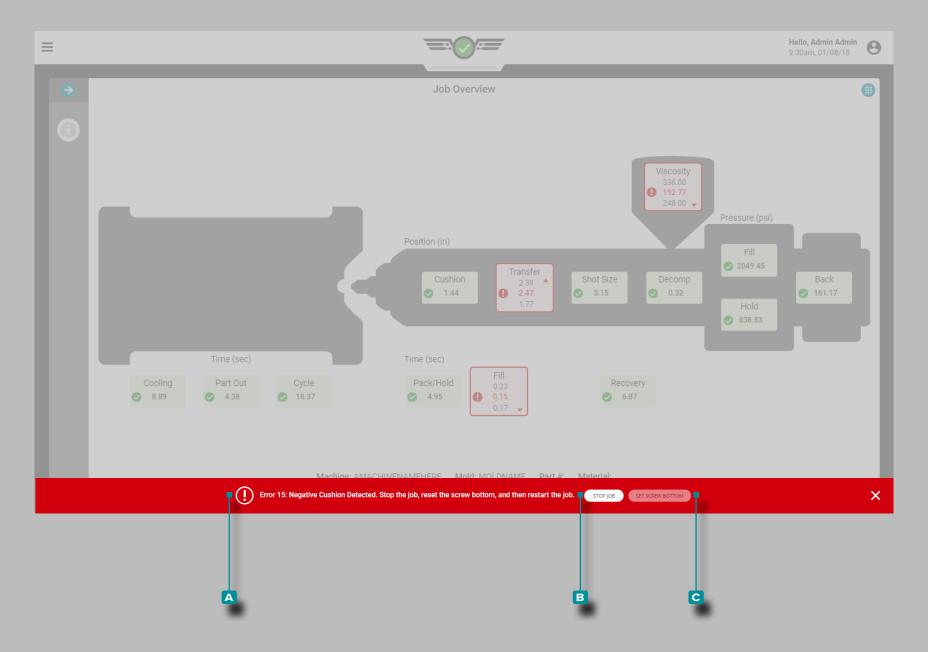

Le temps de remplissage nécessaire pour déplacer la quantité correcte de matériau dans une cavité à l'intérieur d'un moule reste constant (sans compter les inserts). Pour ajuster le temps nécessaire pour déplacer le matériau dans le moule, la vitesse de la machine doit être ajustée (po / s). Cependant, si un processus est mis en place avec le même temps de remplissage (po / sec) sur une machine différente avec une vis différente, le volume (po³ / sec) de matériau déplacé pendant le temps de remplissage ne sera pas le même. L'utilisation d'un débit volumétrique (pouces ³ / s) au lieu de la vitesse

(pouces / secondes) normalise le taux de remplissage de la même manière que le volume normalise la position; contrairement à la pression hydraulique, la pression plastique normalise les processus entre les machines.

Pression Hydraulique ou Pression Plastique

La pression hydraulique est la quantité de pression (psi) requise de l'unité hydraulique pour remplir une cavité dans un moule. Pour régler la pression du matériau entrant dans le moule, les pressions de maintien et de retour de la machine doivent être ajustées.

La pression du plastique à l'intérieur du fût ou de la cavité (ppsi) n'est pas équivalente à la pression hydraulique à l'intérieur de l'unité hydraulique (psi). Le rapport d'intensification est utilisé pour multiplier la pression hydraulique afin de déterminer la pression plastique. En définissant la pression en termes de pression plastique (ppsi) au lieu de pression hydraulique (psi), le processus à l'intérieur du moule peut être configuré de la même manière sur différentes machines.

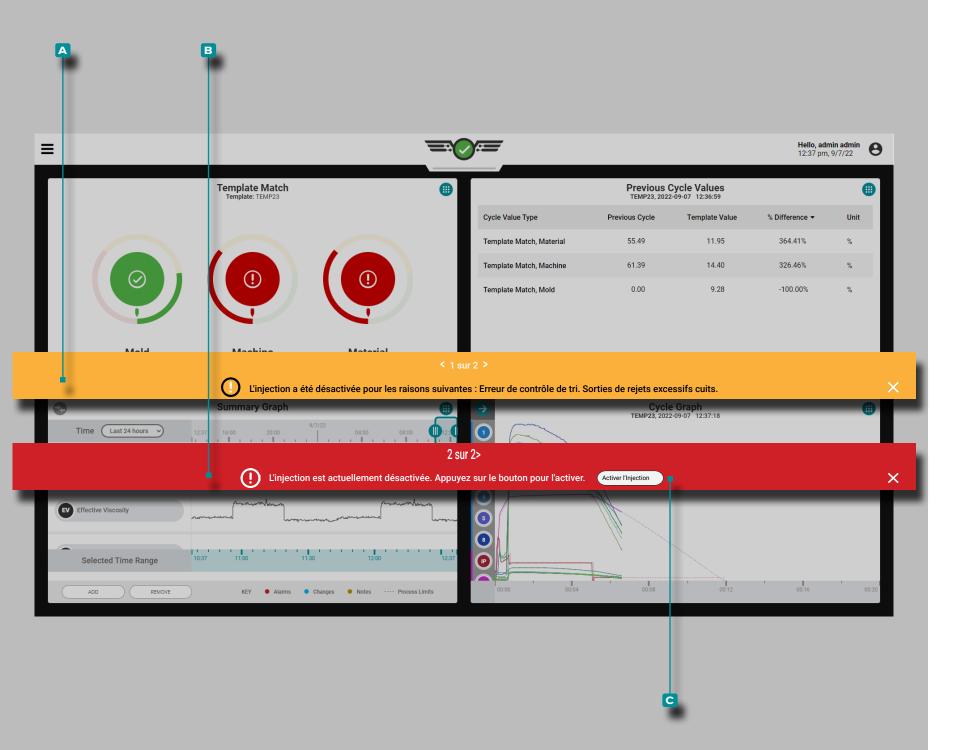

Erreurs de Traitement

Rebuts Excessifs

Si l'option de sortie de contrôle pour les rejets excessifs est attribuée pendant la configuration de la machine et configurée pendant la configuration du processus, alors le robot ou la machine connecté sera activé après que le nombre désigné de rejets se soit produit dans les cycles consécutifs spécifiés (reportez-vous à la section «Affectation des Sorties» on page 21 et «Options de Pilotage» on page 46 pour plus d'informations).

Si la sortie de rejet excessif est activée, un A message d'erreur apparaît pour indiquer que la sortie est activée et doit être effacée pour continuer le travail. Appuyez sur le bouton B EFFACER LES REJETS EXCESSIFS pour effacer la condition.

Une fois que la sortie activée est effacée, elle est réinitialisée et prête à être activée dans le cas où les conditions sont remplies pour des rejets excessifs tels que définis lors de la configuration de la machine et du processus.

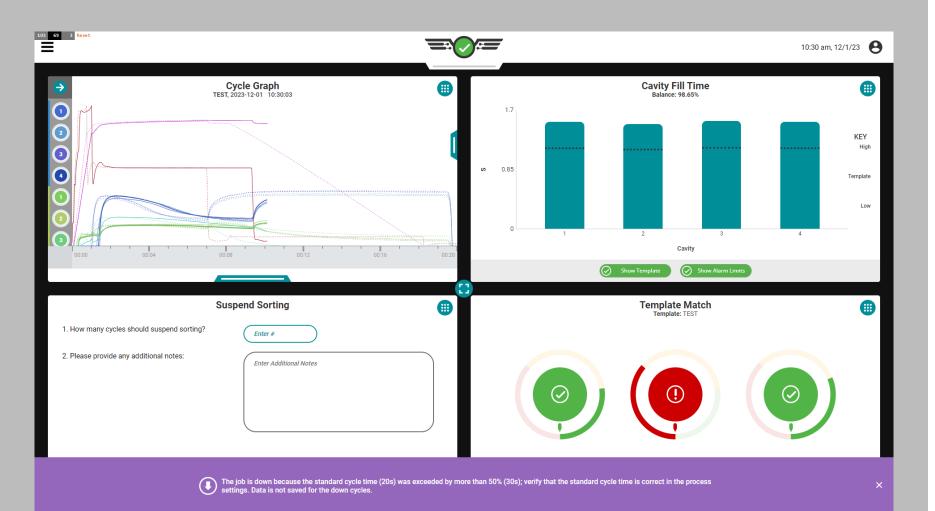

Coussin Négatif Détecté

Si le fond de la vis n'est pas correctement réglé lors de la configuration du processus, un message d'erreur peut apparaître pour indiquer que le coussin négatif est détecté et il faut vérifier que le fond de la vis est correctement réglé.

Appuyez sur le bouton B ARRÊTER LE TRAVAIL pour arrêter le travail; abaissez physiquement la vis sur la machine, puis appuyez pour sélectionner le bouton C VIS DE RÉGLAGE INFÉRIEURE. Le travail doit être redémarré une fois le fond de la vis réglé.

(i) **REMARQUE** Le fond de la vis doit être réglé chaque fois qu'une configuration est créée. Le CoPilot ne mémorise pas cette position et le coussin ne sera pas correctement calculé si le fond de la vis n'est pas réglé.

Si l'erreur n'est pas résolue en réglant le fond de la vis, vérifiez le capteur de course physique pour les pertes de communication.



Activer l'injection Désactivé

L'activation de l'injection permet à la machine de fonctionner jusqu'à ce que l'un des événements suivants se produise : un capteur de contrôle tombe en panne ou arrête la communication avec le système CoPilot ; tout module utilisé pour le contrôle ou le séquençage ne parvient pas à communiquer avec le système CoPilot ; le module de relais de sortie associé à la commande Inject Enable est déconnecté ; ou l'alimentation du système CoPilot est coupée.

Si l'une des conditions se produit pour désactiver l'injection, un A message d'erreur apparaîtra pour indiquer quelle condition s'est produite, puis un autre B message d'erreur apparaîtra pour permettre à l'utilisateur de réactiver l'injection.

Appuyez ♣ sur le bouton C ACTIVER L'INJECTION pour réactiver l'injection sans arrêter ni redémarrer la tâche sur le système CoPilot.

Temps de Cycle Dépassé

Si le temps de cycle défini est dépassé de plus de 50 pour cent, le système passera dans un état d'arrêt, LE SYSTÈME ARRÊTERA DE SAUVEGARDER LES DONNÉES et le message suivant apparaîtra :

«Le travail est en panne car le temps de cycle standard (x secondes) a été dépassé de plus de 50 % (y secondes) ; vérifiez que le temps de cycle standard est correct dans les paramètres du processus. Les données ne sont pas enregistrées pour les cycles de baisse.

(!) Course de vis détectée avant l'injection avant.	X
Prreur 8	X
Prreur 9	X
① Erreur 11	X
! Erreur 12	X
Coussin Négatif Détecté Arrêtez le travail, réinitialisez le fond de la vis, puis redémarrez le travail.	X
! Erreur 16	X
① Erreur 17	×
Prreur 18	X
① Erreur 20	X
Temps de remplissage Empreinte ne semble pas être correct car le seuil de 1000 PSI minimum a été atteint trop tôt dans le cycle.	×
Le volume de remplissage paramétré n'a pas été atteint, le système ne peut pas calculer le temps de remplissage dynamique ou le temps de remplissage dynamique & de compactage .	X
Le premier étage est attribué, mais ne s'est pas déclenché lors de l'injection.	X
La deuxième étape est assignée mais ne s'est pas déclenchée pendant l'injection.	X
Impossible de calculer le refroidissementtempslorsqu'une synchronisation de tri autre que " Fin de moule fermer " est sélectionné.	×

Erreursde Séquence

Il y a 15 erreurs qui peuvent se produire attribuées à des erreurs de séquence, trouvées ci-dessous :

- Course de vis détectée avant l'injection avant.
- Erreur 8 : le système CoPilot a détecté un démarrage de cycle incorrect, généralement dû à des signaux de serrage de moule incorrects ou manquants ou à des signaux de séquence d'injection avant.
- Erreur 9 : le système CoPilot a détecté une fin de cycle incorrecte, généralement due à des signaux de serrage de moule incorrects ou manguants ou à des signaux de séquence d'injection avant.
- Erreur 11 : le séquenceur du système CoPilot n'a pas réussi à calculer une valeur, généralement en raison de signaux de séquence incorrects ou manguants.
- Erreur 12—Le système CoPilot est incapable de détecter le temps de remplissage; cela peut être dû à un premier ou deuxième signal de séquence d'état incorrect, ou à un premier ou deuxième signal de séquence déconnecté.
- Erreur 16—Le système CoPilot ne peut pas détecter le sens de la vis ; cela peut être dû à des erreurs de communication.
- Erreur 17—Le système CoPilot ne peut pas détecter la position de transfert ; cela peut être dû à un signal de séquence de premier ou deuxième étage incorrect ou manguant.
- Erreur 18—Le système CoPilot n'a pas pu calculer certaines données du début du remplissage à la fin du maintien; cela peut être dû à des signaux de séquence manquants ou à des erreurs de communication du capteur.
- Erreur 20—Le seuil de fin de cavité du système CoPilot pour le temps de remplissage de la cavité a été dépassé avant que le remplissage ne commence réellement; cela peut être dû à des signaux de séquence incorrects ou manquants et à des données de capteur.
- Coussin Négatif Détecté Arrêtez le travail, réinitialisez le fond de la vis, puis redémarrez le travail. Cela est généralement dû à un jeu de fond de vis incorrect ou à des interruptions de communication du capteur de course.
- Temps de remplissage Empreinte ne semble pas être correct car le seuil de 1000 PSI minimum a été atteint trop tôt dans le cycle. Cela peut être dû à des manquants ou à des signaux de séquence incorrects ou à des erreurs de communication du capteur.
- Le volume de remplissage paramétré n'a pas été atteint, le système ne peut pas calculer le temps de remplissage dynamique ou le temps de remplissage dynamique & de compactage.
- Le premier étage est attribué, mais ne s'est pas déclenché lors de l'injection.
- La deuxième étape est assignée mais ne s'est pas déclenchée pendant l'injection.
- Impossible de calculer le refroidissementtempslorsqu'une synchronisation de tri autre que " Fin de moule fermer " est sélectionné.

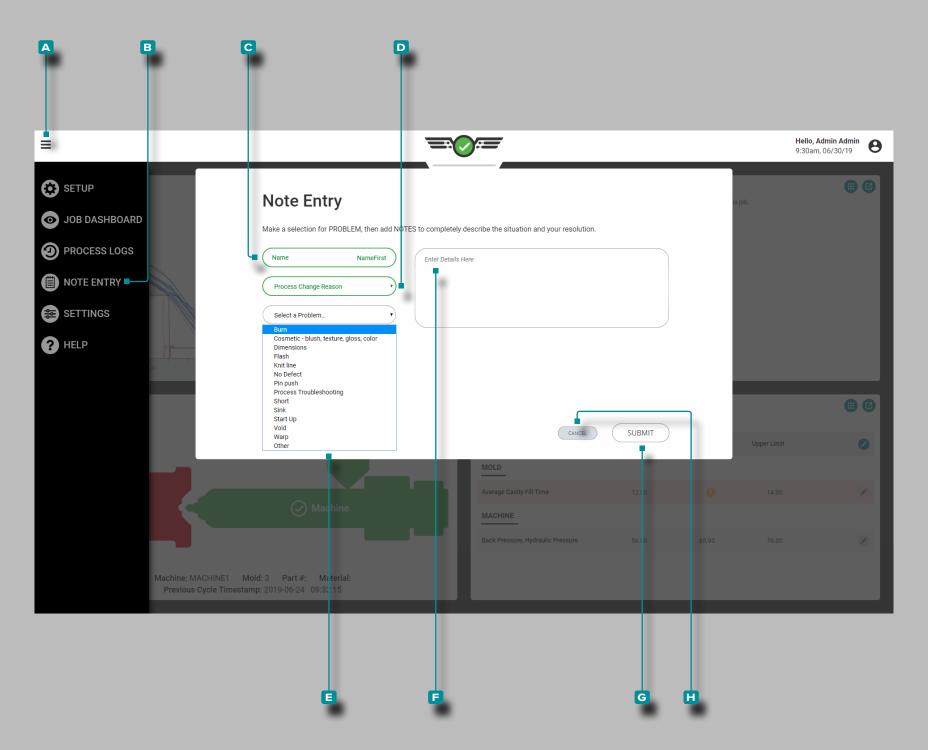

① Erreur 5 X ① Erreur 13 X ② Erreur 14 X ② Temps de remplissage Empreinte ne pouvait pas être calculé parce que le passage course zéro n'a pas été détecté. X ③ Erreur 22: Temps de remplissage Empreinte n'a pas pu être calculé parce que le minimum de pression empreinte de 1000 PSI n'a pas été atteint. X ④ Le Temps de remplissage Empreinte n'a pas pu être calculé car le capteur de fin de cavité n'était pas disponible. X ④ Erreur 25 X

Tableau de Bord (suite)

Erreurs de Communication du Capteur

Sept erreurs peuvent survenir, attribuées aux erreurs de communication du capteur, décrites ci-dessous :

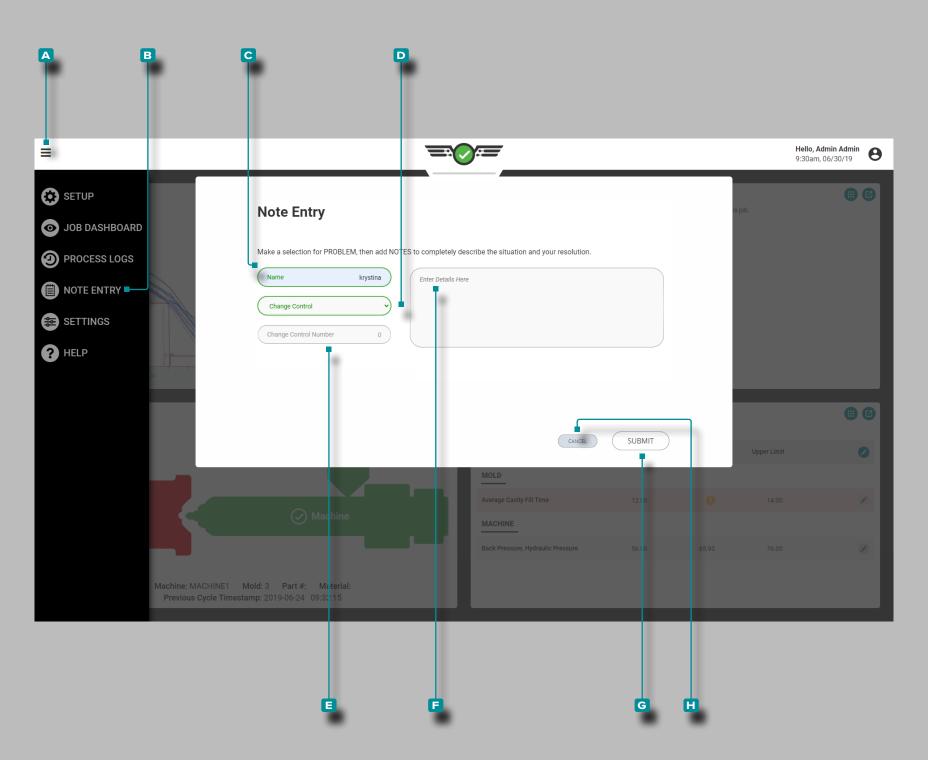
- Erreur 5—Le capteur de position de vis du système CoPilot n'est pas connecté ou attribué ; cela peut être dû à des erreurs de communication du capteur.
- Erreur 13—Le système CoPilot est incapable de trouver la position de la vis ; cela peut être dû à des erreurs de communication du capteur.
- Erreur 14—Le système CoPilot a détecté une erreur générale de capteur; cela peut être dû à des erreurs de communication du capteur (le capteur n'est pas valide en raison d'une condition inférieure ou supérieure à la plage).
- Temps de remplissage Empreinte ne pouvait pas être calculé parce que le passage course zéro n'a pas été détecté. Cela peut être dû à des données de course négatives, à une mise à zéro incorrecte de la vis, ou peut être causé par l'erreur 15 ou 16 (voir «Erreursde Séquence» on page 157).
- Temps de remplissage Empreinte n'a pas pu être calculé parce que le minimum de pression empreinte de 1000 PSI n'a pas été atteint.
- Le Temps de remplissage Empreinte n'a pas pu être calculé car le capteur de fin de cavité n'était pas disponible.
- Erreur 25—Le système CoPilot a détecté des données de capteur non valides; cela peut être dû à des capteurs non valides ou à des erreurs de communication des capteurs.

Entrée de Note

Les notes peuvent être saisies en tant que note générale, pour une raison de changement de processus ou avec un numéro de contrôle de changement de processus pour affichage dans les journaux de processus et/ou le widget Notes sur le tableau de bord des tâches.

Note Générale

Appuyez sur le bouton de A menu, puis appuyez sur L B Saisie de notes; entrez | un C nom d'utilisateur, puis appuyez ur selectionner le D typede note.

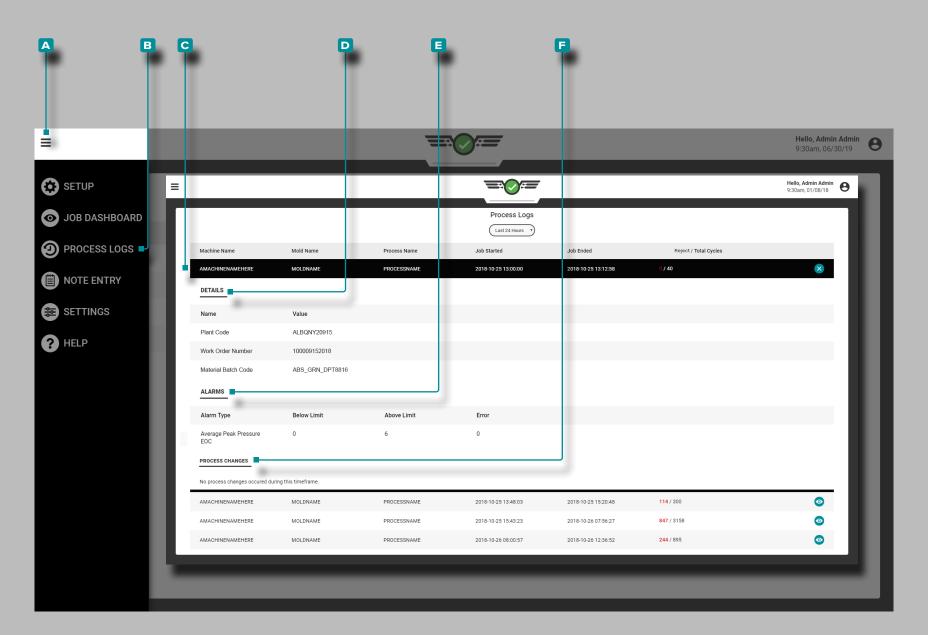

Entrez | les détails souhaités dans le champ des | détails. Appuyez | sur le bouton | SOUMETTRE pour enregistrer la note ou appuyez | sur le bouton | ANNULER pour annuler les modifications.

Remarques pour les Raison du Changement du Process

Appuyez sur le bouton de Amenu, puis appuyez sur BSaisie de notes; entrez un conom d'utilisateur, puis appuyez sur pour sélectionner le typede note. Si le type de note est un motif de changement de processus, appuyez sur pour sélectionner un problème dans le menu déroulant.

Les problèmes incluent les options sélectionnables suivantes (pour les types de note de motif de changement de processus uniquement):

- Graver
- · Cosmétique—fard, texture, brillance, couleur esthétiques
- Dimensions
- Bavures
- · Ligne de soudure
- · Aucune anomalie
- · Aimant poussant
- · Dépannage du procédé
- Court
- Dépressions en surface
- Démarrage
- Bulles
- · Gauchissement / Déformation
- Autre


Saisie de Notes (suite)

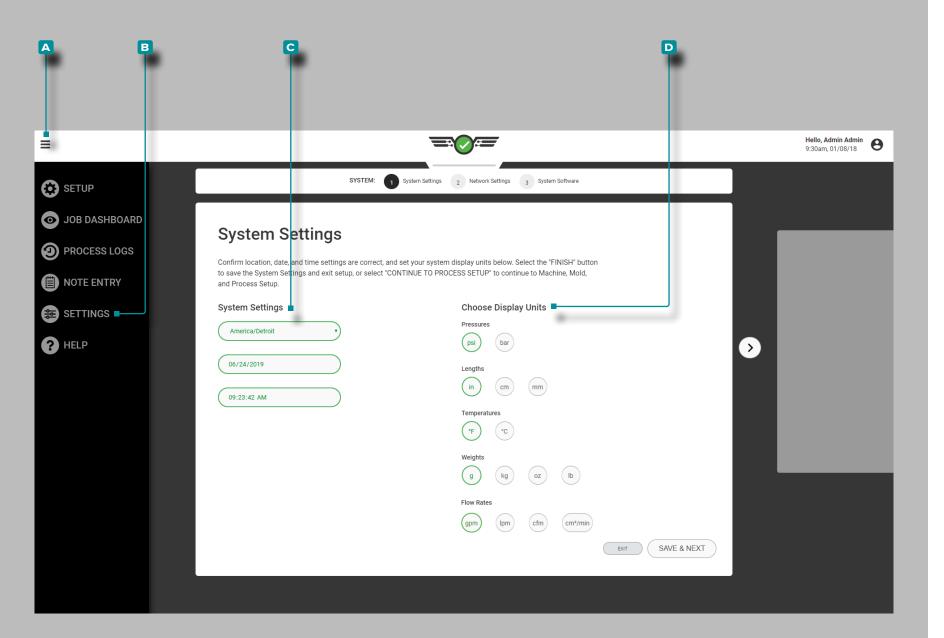
Remarques sur le Numéro de Contrôle des Modifications de Processus

Appuyez sur le bouton de Amenu, puis appuyez Entrée de note; entrez un conom d'utilisateur, puis appuyez sur pour sélectionner le type de note de contrôle des modifications.

Saisissez | le | numéro de contrôle des modifications dans le champ. Entrez | les détails souhaités dans le champ des | détails.

Appuyez | sur le bouton | SOUMETTRE pour enregistrer la note ou appuyez | sur le bouton | ANNULER pour annuler les modifications.

Protocoles de Procédés


Le système CoPilot entre les journaux pour les instances hors correspondance qui ne sont pas corrigées par un utilisateur. Les journaux système incluent les mêmes informations que les journaux utilisateur, à l'exception du problème, de la solution et des notes.

Afficher le Journal

Le journal de processus comprend chaque entrée de modifications apportées au processus. Pour afficher le journal de processus, appuyez a sur le bouton de menu, puis appuyez sur B Journal de processus.

Les détails du **B** journal de processus incluent le nom de la machine, du moule et du processus, la date et l'heure de début et de fin de la tâche, ainsi que le nombre de cycles de rejet et le nombre total de cycles.

Pour afficher des détails supplémentaires sur un journal de processus, appuyez sur une entrée; les détails supplémentaires incluent les détails des champs personnalisés, les événements d'alarme, les changements de processus et toutes les remarques, si elles sont entrées.

Réglages

Paramètres CoPilot

Les utilitaires d'informations et de paramètres du système, du réseau et du logiciel CoPilot sont disponibles dans Paramètres. Appuyez sur le bouton de Amenu, puis appuyez sur le Paramètres pour afficher les paramètres et les informations du logiciel CoPilot.

Paramètres Système


Complétez les paramètres système la première fois qu'une configuration est créée. Les paramètres système incluent le fuseau horaire, la date, l'heure et les unités d'affichage.

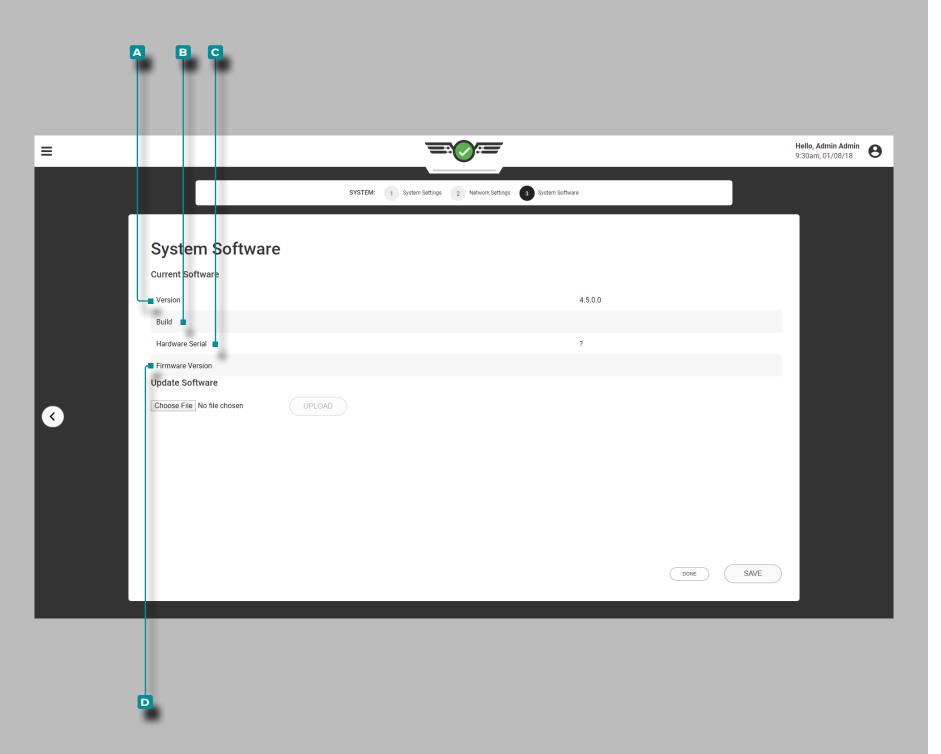
Fuseau Horaire, Date, Heure

Appuyez • pour sélectionner le fuseau horaire, la date et l'heure souhaités dans les clistes déroulantes fournies.

Unités d'affichage

Appuyez ♣ pour sélectionner les ▶ unités d'affichage du logiciel souhaitées pour la pression, la longueur, la température et le poids.

Réglages réseau


Complétez les paramètres réseau pour les configurations réseau CoPilot et The Hub® lors de la première configuration, ou configurez les systèmes CoPilot et The Hub ultérieurement à partir de l'utilitaire Paramètres.

Configuration du Réseau CoPilot

Sélectionnez la configuration réseau CoPilot souhaitée; A DHCP ou B statique. Si une configuration B statique est choisie, entrez | les C informations réseau requises dans les champs fournis.

The Hub Configuration Réseau

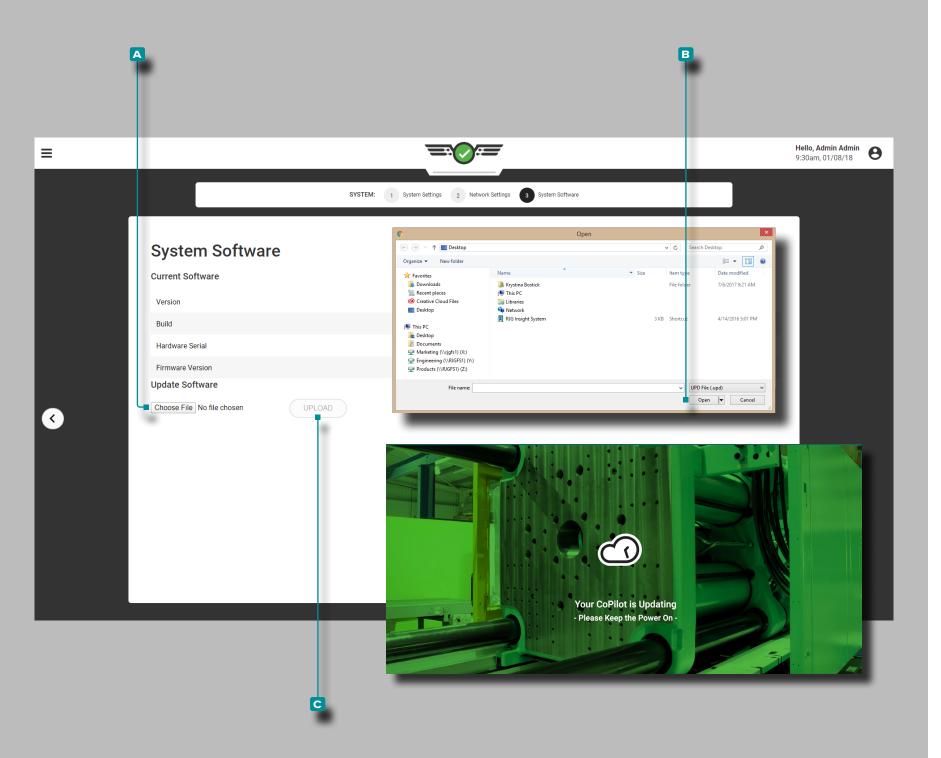
Entrez D l'adresse réseau du The Hub dans le champ fourni.

Logiciel du Système

Version de Logiciel

La version du logiciel est le A numéro de version du logiciel installé.

Construction de Logiciel

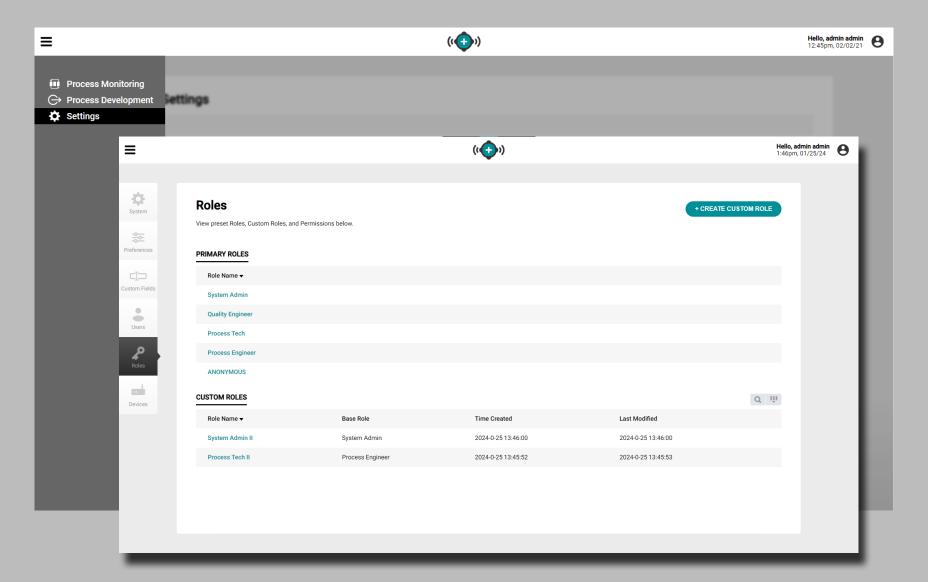

La version du logiciel est le **B** numéro de version du logiciel installé.

Numéro de Série du Matériel

Le C numéro de série du matériel associé à l'équipement installé s'affiche.

Version Firmware

Le **D** numéro de version du micrologiciel associé au matériel installé s'affiche.

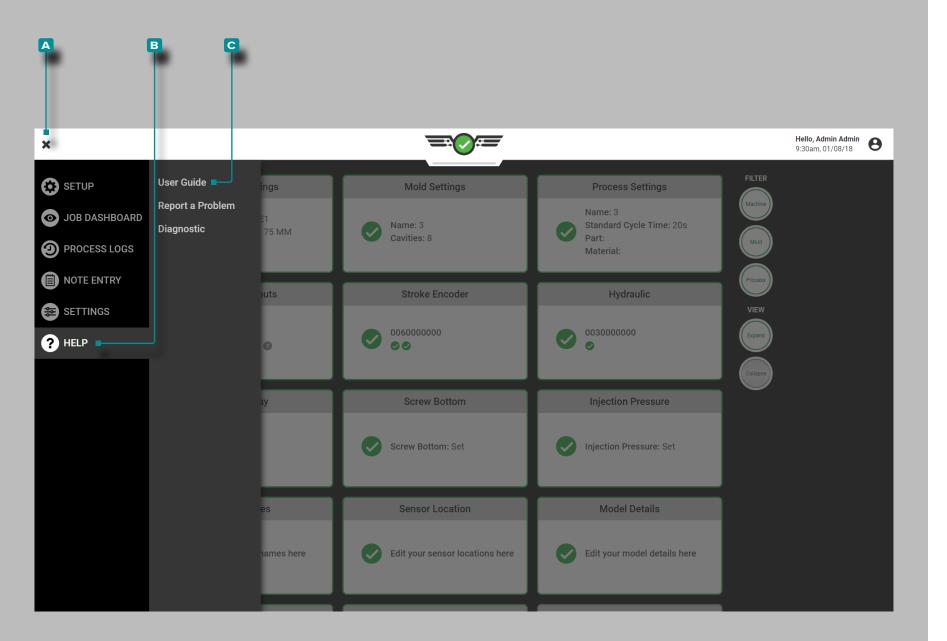

Mettre à Jour le Logiciel

✓ MISE EN GARDE NE PAS ARRÊTER OU REDÉMARRER LE SYS-TÈME COPILOT AP4.0 PENDANT QU'UNE MISE À JOUR EST EN COURS D'APPLICATION; LE NON-RESPECT DE CETTE CONSIGNE ENTRAÎNERA DES DOMMAGES OU LA DESTRUCTION DE LA CARTE AP4.0.

Si le système CoPilot est mis en réseau avec un système The Hub, reportez-vous au Guide de l'utilisateur du logiciel The Hub pour obtenir des instructions sur la mise à jour du logiciel. Si le système CoPilot n'est pas mis en réseau avec un système The Hub, procédez comme suit lorsque des mises à jour sont disponibles.

✓ MISE EN GARDE NE sautez PAS les versions de mise à jour ;
N'appliquez PAS une mise à jour plus récente si une mise à jour plus ancienne est disponible, c'est-à-dire appliquer la mise à jour v7.2 à un système v7.0 plutôt qu'appliquer la mise à jour v7.1 à un système v7.0, puis appliquer la mise à jour v7.2. Consultez le site Web de RJG pour vous assurer que la mise à jour correcte est appliquée au système CoPilot. Le non-respect peut entraîner des erreurs ou des problèmes dans le système CoPilot.

Téléchargez le fichier de mise à jour approprié sur le site Web rjginc.com. Appuyez sur le bouton CHOISIR FICHIER pour sélectionner le fichier de mise à jour ; appuyez sur le fichier de mise à jour (.UPD), appuyez sur le bouton Duvrir pour installer les mises à jour logicielles, puis appuyez sur le bouton TÉLÉCHARGER.



Autorisations des Rôles d'Utilisateur & Sécurité

L'accès individuel aux fonctionnalités et fonctions est déterminé par le rôle d'utilisateur attribué lors de la configuration du système CoPilot et du logiciel Hub. Si une fonctionnalité ou une fonction n'est pas disponible, veuillez vérifier les autorisations du rôle utilisateur avant de soumettre un rapport d'erreur.

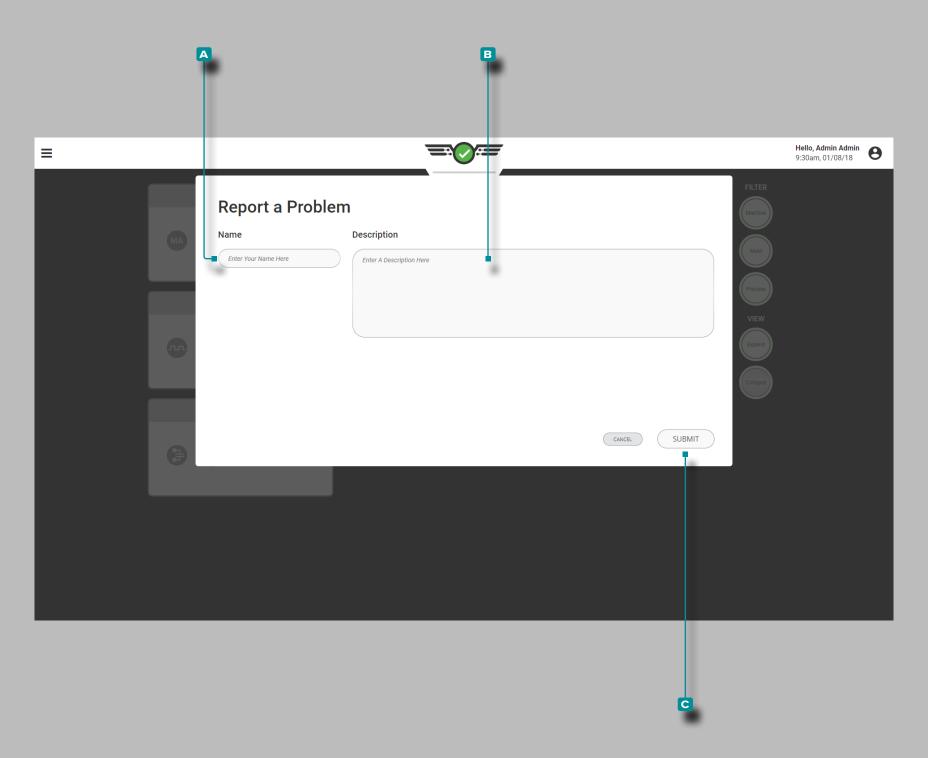
Une notification peut apparaître ou non pour informer l'utilisateur que les autorisations requises ne sont pas disponibles pour exécuter la fonction ou utiliser une fonctionnalité.

Les autorisations des rôles utilisateur pour le système CoPilot sont gérées sur le logiciel Hub ; reportez-vous au Guide de l'utilisateur du logiciel Hub pour connaître l'intégralité des autorisations des rôles utilisateur.

Aide

Aide CoPilot et Rapport de Problèmes

L'aide et le rapport de problèmes sont disponibles dans le menu Aide. Appuyez sur le bouton de menu A, puis appuyez sur B Aide pour signaler un problème logiciel.

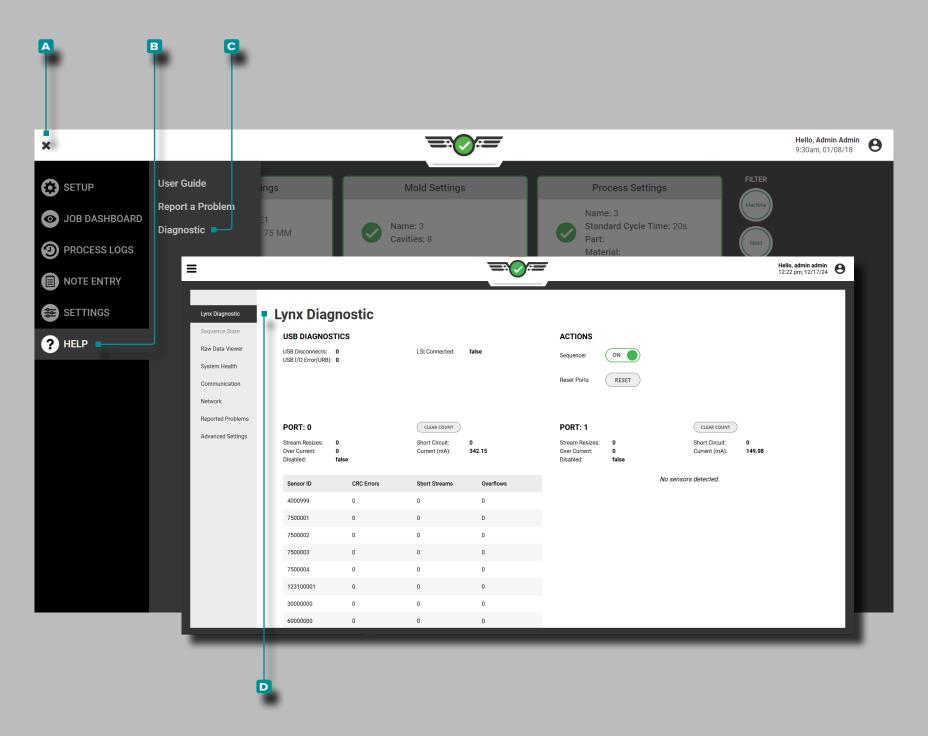

Guide de l'utilisateur

Appuyez sur le bouton Guide de l'utilisateur pour afficher une notification dirigeant l'utilisateur vers le site Web rjg pour afficher le Guide de l'utilisateur du système CoPilot.

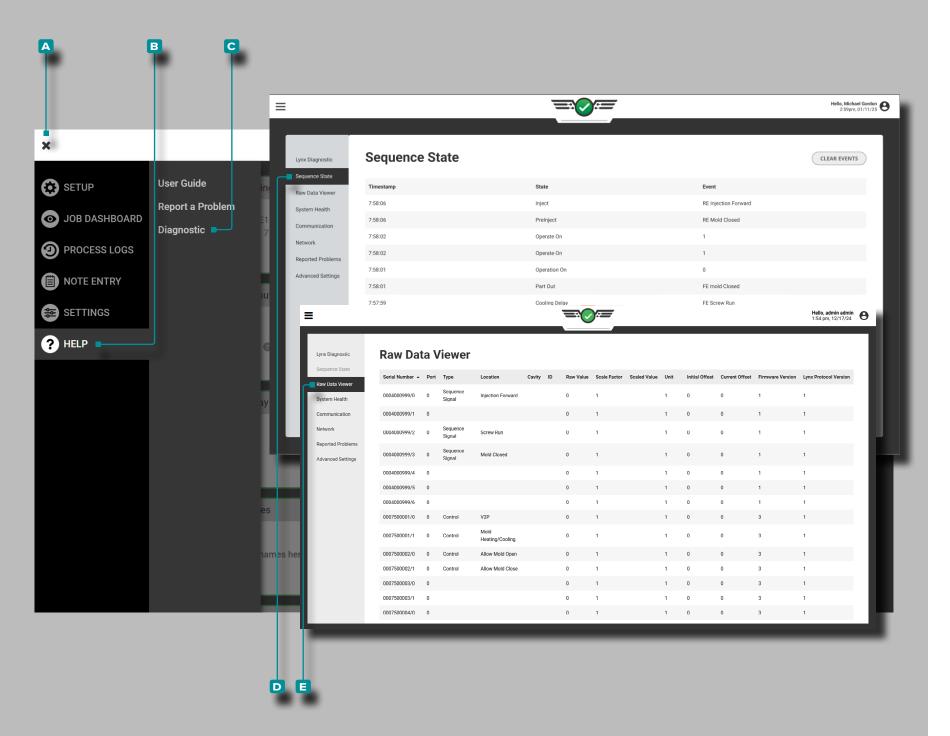
Signaler un problème

Entrez I un A nom et une B description dans les champs fournis, puis appuyez sur le bouton C SOUMETTRE pour signaler un problème avec le logiciel.

(i) REMARQUE L'accès individuel aux fonctionnalités et fonctions est déterminé par le rôle d'utilisateur attribué lors de la configuration du système CoPilot et du logiciel Hub. Si une fonctionnalité ou une fonction n'est pas disponible, veuillez vérifier les autorisations du rôle utilisateur avant de soumettre un rapport d'erreur. Les autorisations des rôles utilisateur pour le système CoPilot sont gérées sur le logiciel Hub; reportez-vous au Guide de l'utilisateur du logiciel Hub pour connaître l'intégralité des autorisations des rôles utilisateur.


Aide (suite)

Diagnostique

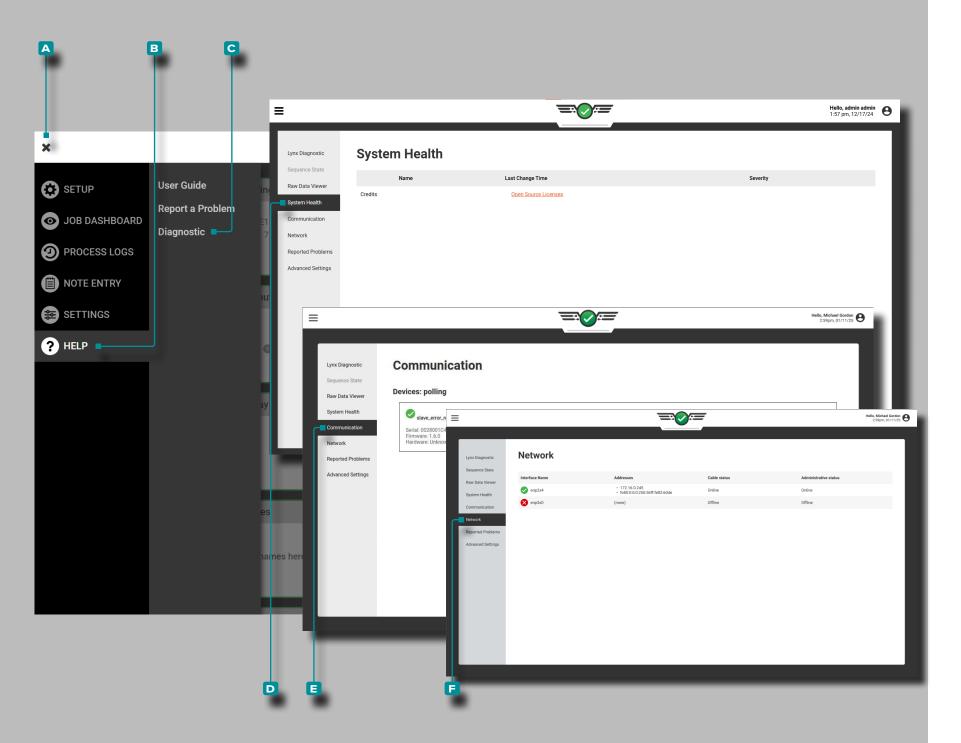

La page Diagnostic est utilisée pour résoudre les problèmes potentiels du capteur Lynx ™; en général, cette page est destinée au personnel d'assistance clientèle de RJG, Inc. Pour afficher la page de diagnostic, appuyez sur ♣ le boutonde ♠ menu, puis sur ♣ C Diagnostic.

Diagnostique Lynx

La page de diagnostic Lynx affiche les diagnostics USB, les actions et les informations sur les ports. Appuyez sur D Lynx Diagnostic sur la page C Diagnostic pour afficher D Lynx Diagnostic.

- 1. Les diagnostics USB incluent le nombre de déconnexions USB, USB I/O Erreur (URB) et informations de connexion LSI.
- **2.** Les actions incluent les options de séquenceur et de réinitialisation des ports.
 - SÉQUENCEUR: Le séquenceur On/Off le commutateur facilite la connexion entre le AP4.0/CoPilot et le module de séquence de machine Lynx ID7-M-SEQ. Si le séquenceur est éteint, AP4.0/CoPilot ne recevra pas de signaux de l'ID7-M-SEQ.
 - · RÉINITIALISER LES PORTS : La sélection du bouton Réinitialiser les ports RÉINITIALISER à côté de l'en-tête Réinitialiser les ports affichera un bouton Confirmer. Le bouton Confirmer reviendra à la réinitialisation par défaut après cinq secondes si l'utilisateur n'a pas confirmé l'action ; si le bouton Confirmer est sélectionné, les ports seront réinitialisés et un message pour l'utilisateur s'affichera pendant que les ports Lynx se reconnectent : « Les ports sont en cours de réinitialisation. Veuillez patienter jusqu'à 30 secondes pour que les ports soient complètement réinitialisés. L'utilisateur peut reprendre le travail une fois que les ports se sont reconnectés avec succès. Aucune donnée ne sera accessible après la sélection du bouton RÉINITIALISER jusqu'à ce que les ports soient reconnectés avec succès. Les ports ne peuvent pas être réinitialisés si une tâche est en cours d'exécution.
- **3.** PORTS: Les ports 0 et 1 se rapportent aux ports Lynx physiques sur le processeur d'application du système CoPilot AP4.0. La section Ports affiche les informations relatives au nombre de capteurs connectés. Pour effacer les valeurs des nombres d'erreurs, l'utilisateur peut appuyer sur le bouton EFFACER LE COMPTE situé près de chaque port.

Diagnostic (suite)


Pour afficher la page de diagnostic, appuyez sur le boutonde A menu, puis sur le B Aide, puis sur le C Diagnostic.

État de la Séquence

La page État de séquence fournit un tableau des états de séquence comprenant l'horodatage, l'état, l'événement et un bouton d'effacement des événements. Appuyez sur Letat de séquence dans la page Diagnosticpour afficher D l'état de séquence.

Visionneuse de Données Brutes

La page Visionneuse de données brutes fournit un tableau de toutes les données du système, notamment le numéro de série, le port, le type, l'emplacement, la cavité, l'ID, la valeur brute, le facteur d'échelle, la valeur mise à l'échelle, l'unité, le décalage initial, le décalage actuel, la version du micrologiciel et la version du protocole Lynx. Appuyez sur Lyisionneuse de données brutes depuis la page C Diagnostic pour afficher Lyisionneuse de données brutes.

Diagnostic (suite)

Pour afficher la page de diagnostic, appuyez sur • le boutonde A menu, puis sur • B Aide, puis sur • C Diagnostic.

Santé du système

La page État du système fournit le nom, l'heure de la dernière modification (licences open source) et la gravité du système.

Appuyez sur D État du système sur la page Diagnostic pour afficher D État du système.

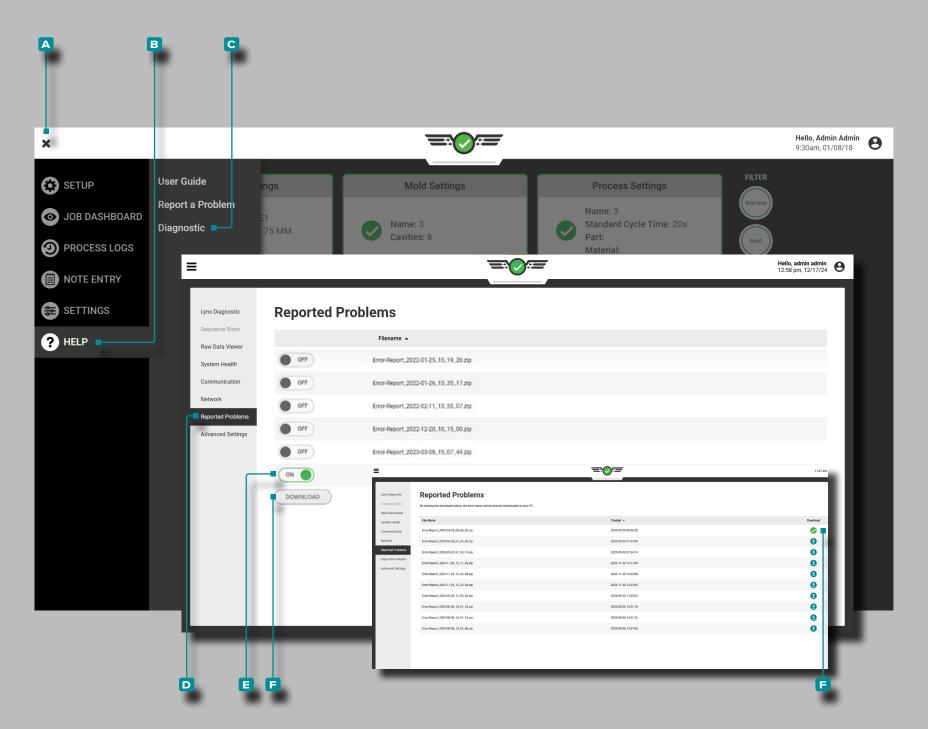
Communication

La pageCommunication

fournit une liste des périphériques

EtherCAT connectés.

Appuyez sur


Communication depuis la page

Diagnostic pour afficher

Communication.

Réseau

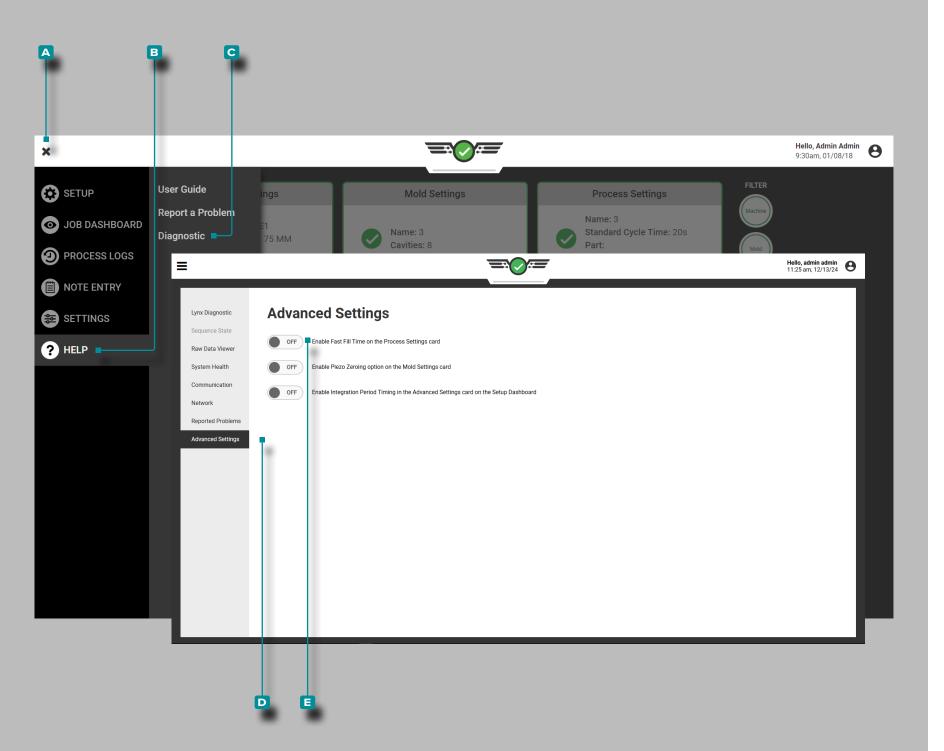
La page Réseau fournit un tableau des noms d'interface, des adresses, de l'état des câbles et du statut administratif. Appuyez sur 💃 🗲 Réseau depuis la page C Diagnostic pour afficher F Réseau.

Diagnostic (suite)

Pour afficher la page de diagnostic, appuyez sur le boutonde A menu, puis sur le B Aide, puis sur le C Diagnostic.

Problèmes Signalés

Appuyez ♣ **D** sur la page **C** Diagnostic pour afficher les **D** problèmes signalés.

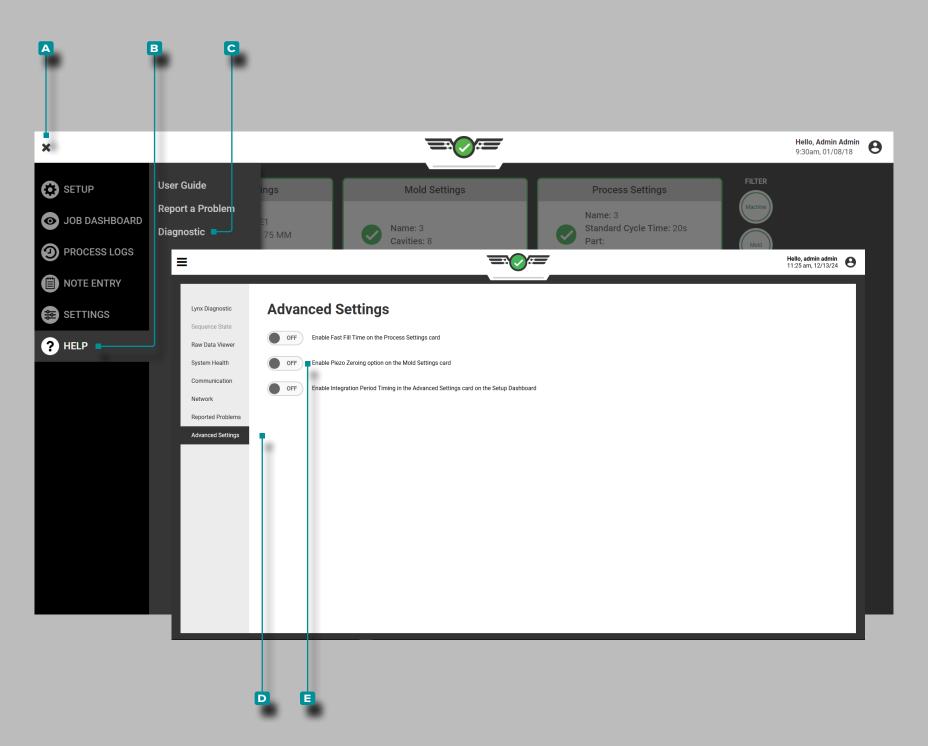

Téléchargement de Rapports d'Erreur sur Une clé USB

- **1.** Branchez une clé USB sur le port USB AP4.0 du processeur d'application du système CoPilot.
- 2. Dans la page Problèmes signalés par diagnostic du logiciel CoPilot, appuyez sur le bouton SUR pour sélectionner le(s) rapport(s) de problème à télécharger (il est permis de sélectionner plusieurs rapports de problème).
 - 3. Appuyez sur le boutonde le téléchargementpour télécharger les rapports d'erreur sélectionnés.
 - 4. Le rapport d'erreur sera désormais disponible sur la clé USB.
 - **5.** Débranchez la clé USB de l'AP4.0, puis insérez la clé USB dans le port USB d'un ordinateur.

ALTERNATIVEMENT

Les utilisateurs peuvent se connecter à distance à un système CoPilot et télécharger un rapport d'erreur sur un PC. L'utilisation de cette fonctionnalité est secondaire à la méthode décrite ci-dessus et n'est pas la méthode recommandée ou préférée; procédez à vos risques et périls.

Dans la page © Diagnostique D Problèmes signalés par le logiciel CoPilot, appuyez 🖢 sur le bouton de © téléchargement pour télécharger le(s) rapport(s) de problème sur le PC (il est permis de sélectionner plusieurs rapports de problème).


Paramètres Avancés: Activation du Temps de Remplissage Rapide

Cependant, si un remplissage rapidetemps de moins de 0,1 secondes est utilisé, les paramètres avancés doivent être activés dans le Diagnostic/Advanced Page Paramètres afin que les paramètres associés s'affichent dans la configuration.

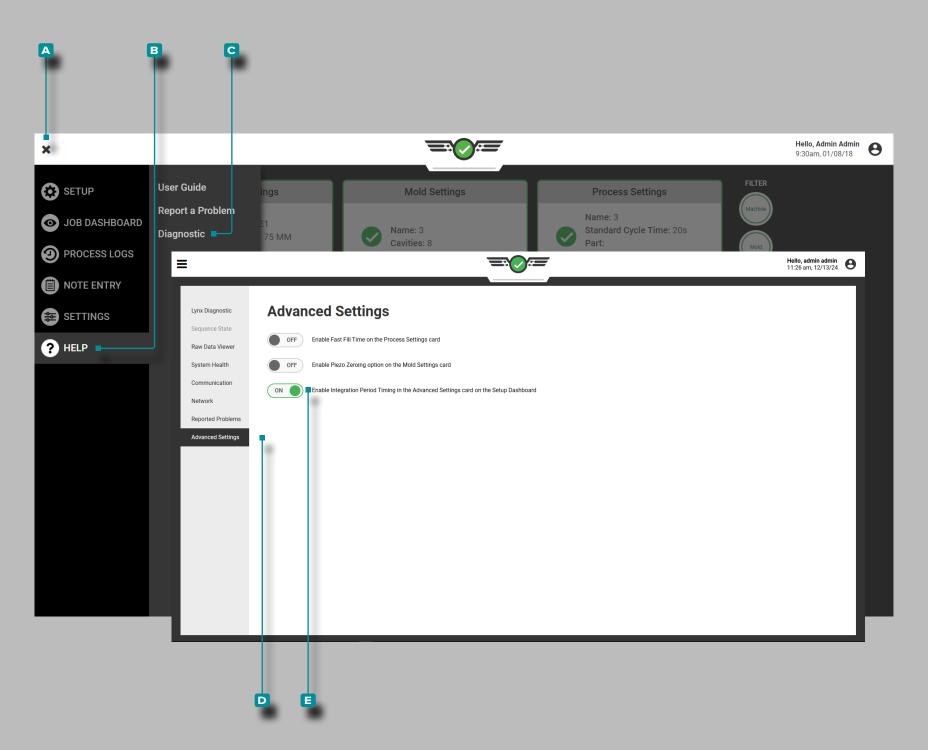
Appuyez sur le bouton de menu A, puis sur B Aide, puis sur Diagnostic, puis sur D Paramètres avancés.

Pour activer ou désactiver le remplissage rapidefois , appuyez sur le curseur pour sélectionner MARCHE/ARRÊT; MARCHE activera le remplissage rapidefois et les options associées lors de la configuration, tandis que ARRÊTdésactivera le remplissage rapidefois et les options associées lors de la configuration.

(i) **REMARQUE** Même lorsqu'elle est activée sur la page Paramètres avancés, la fonction de temps de remplissage rapide **NE SERA PAS ACTIVÉE** tant que l'utilisateur n'aura pas activé l'option sur la page Paramètres du processus pour un processus. Chaque processus doit individuellement avoir cette option activée s'il est souhaité.

Réglage avancé : Mise à Zéro du Capteur Piézoélectrique

Les capteurs piézoélectriques sont connectés au système CoPilot à l'aide d'adaptateurs contenant des composants qui nécessitent une réinitialisation ou une "mise à zéro" de l'électronique à chaque cycle. Les composants du capteur piézoélectrique sont réinitialisés ou "mis à zéro" à chaque cycle à l'aide du signal de séquence de fermeture du moule (sur le bord descendant du moule fermé) afin de calculer correctement les données du capteur du cycle précédent et suivant.


Dans certains procédés, un ou plusieurs capteurs piézoélectriques continuent à être sous pression après la fin du signal de fermeture du moule. Si la pression reste sur le(s) capteur(s) à 0,5 s après la fermeture du bord descendant du moule, les données du capteur deviendront hors plage, provoquant une condition de dépassement inférieur. Lorsque la condition de sous-gamme se produit, le CoPilot détermine que les données sont invalides et n'affichera plus les données du capteur piézoélectrique.

Pour éviter cette condition de sous-gamme, l'utilisateur peut choisir de modifier le cycle de composant du capteur piézoélectrique par défaut "zéro" du bord descendant du moule fermé au bord montant du moule serré (retarde la mise à zéro des composants). Cette option peut être activée sur la page Paramètres avancés et activée sur la page Configuration du moule du logiciel système CoPilot.

Appuyez sur le bouton de menu A, puis sur B Aide, puis sur Diagnostic, puis sur D Paramètres avancés.

Pour activer ou désactiver la mise à zéro retardée du capteur piézoélectrique, appuyez sur le curseur pour sélectionner Allumé ou éteint; Allumé activera l'option de mise à zéro retardée du capteur piézoélectrique pendant la configuration du moule, tandis que éteint conservera la valeur par défaut de la mise à zéro du capteur piézoélectrique.

(i) **REMARQUE** Même lorsqu'elle est activée sur la page Paramètres avancés, la remise à zéro retardée du capteur piézoélectrique **NE SERA PAS ACTIVE** jusqu'à ce que l'utilisateur active l'option sur la page Paramètres du moule pour un moule. Chaque moule doit avoir cette option activée individuellement si elle est souhaitée.

Paramètre avancé : Calendrier de la période d'intégration

Le système CoPilot utilise la fin de l'injection pour la limite d'intégration, mais avec certaines applications, il peut être nécessaire d'utiliser un délai avant la fin de l'injection pour calculer les données afin d'annuler un pic de pression dans la cavité plus tard pendant l'injection qui n'est pas critique pour la qualité de la pièce.

Par défaut, le système CoPilot utilise le début de l'injection jusqu'à la fin de l'injection pour les calculs d'intégration.

Les limites d'intégration peuvent être définies au début de l'injection via le début de l'injection plus un temps (en secondes) OU à la fin de l'injection plus un temps (en secondes).

Le temps d'intégration affecte les calculs de variables récapitulatives suivants ; tous les autres calculs de variables récapitulatives ne sont pas affectés:

- Extrémité supérieure de la cavité, porte de poteau, cavité médiane
- · Cycle intégral Fin de cavité, Post Gate, Milieu de cavité
- Temps de remplissage et d'emballage pour la fin de la cavité, la porte de poteau et le milieu de la cavité
- Remplir et emballer intégralement pour l'extrémité de la cavité, le portail de poteau etla cavité médiane

Si le début de l'injection plus un temps est plus long que le temps d'injection, les variables récapitulatives seront calculées au début de l'injection plus un temps.

Si le temps limite d'intégration spécifié ne se produit pas avant le temps de tri, le temps limite d'intégration est calculé jusqu'au temps de tri.

Appuyez sur le bouton de menu A, puis sur B Aide, puis sur D Diagnostic, puis sur D Paramètres avancés.

Pour activer ou désactiver la période d'intégration personnalisée, appuyez sur le curseur pour sélectionner MARCHE/ARRÊT; MARCHE activera l'option de synchronisation de la période d'intégration, tandis que ARRÊT conservera la synchronisation de la période d'intégration par défaut.

(i) **REMARQUE** Même lorsqu'elle est activée sur la page Paramètres avancés, la période d'intégration **NE SERA PAS ACTIVE** tant que l'utilisateur n'aura pas terminé la configuration des options sur la carte du tableau de bord des paramètres avancés.

Appendice

Applications de contrôle d'obturateur de seuil Application d'obturateur de seuil séquentiel

Il existe trois schémas différents pour contrôler les obturateurs de vanne de manière séquentielle dans une longue partie plate afin d'éviter les lignes de tricotage :le volume contrôle, cavitépression contrôle du pack et cavitépression contrôle du tricot.

- Utiliser le tirle volume contrôle si pas de cavitépression des capteurs sont présents dans le moule.
- Utiliser la cavitépression pack contrôle avec cavitépression capteurs pour fermer les portes.
- Utiliser la cavitépression contrôle du tricot avec cavitépression capteurs pour ouvrir et fermer les portes - cette méthode est la plus robuste.

Notez que "le volume " est utilisé à la place devisser position dans la mesure du possible - cela "normalise" les moules sur toutes les machines afin que les paramètres de contrôle soient les mêmes quel que soit levisser diamètre.

TirerLe volume Contrôler

S'il n'y a pas de cavitépression capteurs dans un moule, effectuer le tir suivantle volume application de contrôle :

- 1. Prenez une série de plans courts, en enregistrant lele volumeà chaque tir (« Peak, ShotLe volume ") qui passe juste la porte suivante.
- **2.** Réglez les commandes d'obturateur de seuil ouvertes comme suit :
 - · La porte 1 s'ouvre à l'injection vers l'avant.
 - Les portes 2 et 3 s'ouvrent aule volume où le matériel a coulé devant eux (aule volume enregistré plus un petit montant).
 - · Les portes 4 et 5 s'ouvrent presque à pleinvolumes.

Une fois que le matériau a presque atteint la fin de la cavité (à hautela vitesse), ralentir la machine à un paquetla vitesse—environ 10% de remplissagela vitesse pour une valeur initiale.

Par expérience, trouvez unle volumepour chaque valve qui emballera correctement cesurface du moule, en supposant que l'équilibre ne change pas d'un tir à l'autre, et réglez les vannes pour se fermer à cesvolumes.

Une fois toutes les portes fermées, la commande de porte de vanne transfère la machine pour maintenirpression. Vous pouvez également utiliser une étape de maintien pour emballer la pièce ; régler les obturateurs à obturateurs pour se fermer à la fin de l'injection vers l'avant.

Une fois toutes les portes fermées, retirez la calepressionassez longtemps pour refroidir autour des noyaux de tirage, puis terminer l'injection (entemps) et lancez levisser.

Contrôle du pack de pression de la cavité

Si cavitépressiondes capteurs sont installés dans le moule, des points de consigne peuvent être entrés pour fermer chaque obturateur de vanne à un pack spécifiquepression . Le volume les réglages peuvent être utilisés pour ouvrir les vannes en séquence, mais cela peut toujours entraîner des variations avecbague à carreaux fuite. Pour éviter cela, utilisez la cavitépression contrôle de la ligne de tricot discuté comme la troisième approche - se référer à «Contrôle de la ligne de tricotage sous pression de la cavité» on page 176Pression Contrôle de la ligne de tricot » à la page .

Dans la cavitépression contrôle du pack, chaque porte est réglée pour se fermer lorsque son capteur associé atteint un point de consigne. Dans le contrôle de fermeture de l'obturateur de vanne, sélectionnez l'emplacement du capteur le plus proche du point de contrôle de cette vanne. Entrez unle volume consigne dans le widget Valve Close Control en tant que sauvegarde dans le cas où lepression à ce capteur n'atteint jamais sa consigne.

Cavitépression le contrôle peut fonctionner sur des signaux ascendants ou descendants, permettant à une cavité de s'emballer à un niveau plus élevépression que nécessaire, puis en décharger une partie avant de fermer la porte. Si ce schéma est utilisé, réduirepression des gradients à travers la pièce peuvent se produire, mais la machine doit être transférée une fois toutes les vannes fermées.

Contrôle de la ligne de tricotage sous pression de la cavité

Cavitépressionpour le contrôle de la ligne de tricot rend les pièces les plus cohérentes possibles, en évitant les lignes de tricot et en emballant toutes les parties de la pièce au même ou spécifiépression.

Cavitépression le contrôle de la ligne de tricot utilise la cavitépression pour ouvrir et fermer les obturateurs (sauf pour l'obturateur 1, qui s'ouvrira à l'injection vers l'avant).

Réglez le point de consigne d'ouverture pour « détecter » le front d'écoulement et ouvrez la vanne à guillotine lorsqu'elle passe en réglant la vanne pour qu'elle s'ouvre à faiblepression—par exemple, 100 psi—au niveau du capteur près de la porte. Entrez unle volume point de consigne sur la commande d'ouverture de l'obturateur en tant que sauvegarde.

Si vous le souhaitez, fermez les portes comme dans la méthode précédente, «Contrôle du pack de pression de la cavité» on page 176 pour le contrôle de l'emballage.

Contrôle indépendant de la cavité

Dans cette méthode de contrôle, toutes les cavités sont remplies et emballées simultanément. Le système CoPilot contrôle les obturateurs de seuil pour chaque cavité individuellement à l'aide dupression dans chaque cavité. Cela contrôle le pack finalpression, améliorant généralement le contrôle dimensionnel dans les pièces à empreintes multiples.

Configuration de l'obturateur de seuil

- Réglez chaque obturateur ouvert sur « Démarrage de l'injection ».
- 2. Pour chaque commande de fermeture d'obturateur de seuil, sélectionnez la cavitépression, un capteur pour fermer la vanne, et sélectionner pendantpression en hausse. RJG recommande d'utiliser des capteurs de contrôle de post-obturateur et de faire correspondre le numéro de cavité avec le numéro d'obturateur de seuil (le poteau d'obturation 1 ferme l'obturateur de vanne 1).
- 3. Entrez un très hautpression sur le capteur pour démarrer la configuration du procédé—cela empêche la commande de l'obturateur de vanne de fermer des vannes pendant la configuration du processus jusqu'à ce qu'une étude de rhéologie soit terminée et que la machine soit réglée sur la position « remplissage rapide-à-pack lent ».

Configuration process

Un processus de base sera mis en place à l'aide de la machinele volume contrôle, puis sera transféré à la cavité d'obturateur de soupapepression contrôler. Cela nécessite quelques étapes supplémentaires, mais c'est le moyen le plus sûr de configurer le processus.

1. Configuration initiale de la presse Configurez au moins deux profils de vitesse sur la presse—un pour le remplissage à hautela vitesse (V1), et un transfert à un plus lentla vitesse (V2) à l'approche de la fin de la cavité. Réglez la position de transfert de V1 à V2 à la même position où le transfert hors du 1er étage (transfert V →P) se produit normalement. De cette façon, V2 ne sera utilisé que plus tard lorsque le packla vitesse est réglé.

- 2. Établir un remplissageLa vitesse Réglage
 Effectuer un test de rhéologie dans le moule pour trouver un
 remplissagela vitesse plage où le processus s'exécutera le
 plus régulièrement. En règle générale, il est préférable d'utiliser
 un remplissagela vitesse prise aussi vite que possible sans
 endommager le moule ni sacrifier la qualité de la pièce.
- 3. Rétablir laposition de transfert V1 →V2 sur la machine Selon le remplissagela vitesse utilisé à l'étape précédente, la pièce peut être trop courte. Pour remplir la pièce à 95 % au transfert, régler la position V1→V2 et laposition de transfert V →P sur la presse afin que la pièce se remplisse sur V1 uniquement. Cela peut être fait en configurant le processus pour créer une pièce à remplissage uniquement, puis en ajustant la position de transfert jusqu'à ce que la première pièce à remplissage uniquement soit remplie à 90-95%. Pour créer une partie de remplissage uniquement, définissez le maintienpression et mainteneztemps à zéro. Lorsque la presse passe au 2e étage, l'injection vers l'avant se termine immédiatement, provoquant la fermeture des obturateurs.
- 4. Ajuster l'équilibre empreinte à empreinte Ajuster les températures de la buse pour éliminer les déséquilibres une fois par remplissagela vitesse a été choisi en effectuant des tirs courts et en ajustant les températures de la pointe jusqu'à ce que la partie de remplissage uniquementpoids sont les mêmes dans chaque cavité.
- 5. Définir le packLa vitesse Réglage (V2) sur la machine Configurez un profil de vitesse de 2e étage sur la presse. Initialement, cela sera réglé à environ 10 % du remplissagela vitesse réglage. Pour commencer, ne changez pas la position de transfert ; Letransfert V →P sera augmenté, mais les commandes du système doivent d'abord être testées.

- **6.** Testez les commandes
 - Notez le « Peak, ShotLe volume " sur l'outil des valeurs du cycle précédent ou la valeur du curseur sur le graphique du cycle où lele volume courbe atteint son apogée. Sur l'outil de contrôle V →P, utilisez leLe volume» ou « AVC RJGLe volume " méthode de transfert et entrez le " Peak, ShotLe volume " comme valeur de consigne. Ensuite, retournez à la presse et augmentez progressivement la position de transfertV → P. Le système CoPilot doit prendre le contrôle dutransfert V →P et la presse doit continuer à transférer à la même position, créant la même pièce de remplissage uniquement. Pour vérifier, réduisezsignificativement la position de transfert V →P sur le système CoPilot ; la partie de remplissage uniquement devrait devenir plus petite.
- 7. Réglez la position de transfert de la presse de sorte que le système CoPilot contrôle le transfertV → P Une fois que vous êtes sûr que la presse transfère correctement à l'aide de l'outil de transfert V →P, configurez laposition de transfert V →P sur la presse de sorte que le système CoPilot transferts en premier. Une fois le processus configuré, réinitialisez-le dans une position où il servira de sauvegarde au cas où le contrôle du système CoPilot échouerait pour une raison quelconque.
- 8. Emballez les cavités à l'aide de l'outil de transfertV → P Augmentez lele volume consigne sur l'outil de transfert V → P jusqu'à ce que l'une des cavités soit correctement remplie. Une fois que cela se produit, notez le picpression pour cette cavité en utilisant la valeur du curseur sur le graphique de cycle ou la valeur affichée sur l'outil de valeurs de cycle précédent. Par exemple, si la cavité #4 packs d'abord, recherchez le "Peak, Post Gate #4" valeur; utilisez cette valeur à l'étape suivante.

Contrôle indépendant de la cavité-Configuration du processus (suite)

- **9.** Entrez dans la cavitéPression Valeurs sur l'outil Obturateurs de seuil (Cavité 1)
 - Dans l'outil Obturateurs de seuil, localisez l'obturateur de seuil qui contrôle la cavité qui est maintenant complètement remplie. Dans l'exemple de l'étape 8, ce serait la cavité #4. Dans la clôture àpression contrôle, entrez une valeur légèrement inférieure à la cavité du picpression pour cette cavité (dans l'exemple de l'étape 8, il s'agissait du "Peak, Post Gate #4" valeur). L'obturateur devrait maintenant se fermer via la cavitépression.
- **10.** Entrez dans la cavitéPression Valeurs de l'outil Obturateurs de seuil (cavités restantes)
 - Répétez les deux étapes précédentes (8 et 9) pour chaque cavité. Cela se fait en augmentant lele volume consigne dans l'outil de transfert V →P, et au fur et à mesure que chaque cavité se tasse, en entrant dans la cavitépression point de consigne pour cette cavité dans l'outil de commande d'obturateur de seuil. Continuez ce processus jusqu'à ce que toutes les cavités soient transférées à l'aide de la cavitépression contrôler. Au fur et à mesure que les cavités commencent à se fermer, le taux de tassement sur les cavités restantes augmentera ; définir des profils de vitesse plus lents supplémentaires sur la machine vers la fin de l'emballage pour ralentir l'emballage sur les cavités qui ne se sont pas encore fermées.

Définir les contrôles de secours

- 1. Volume de course ou Volume de course RJG Définissez un volume de course de secours ou un point de consigne de volume de course RJG dans l'outil de transfert VMP au cas où aucune des vannes ne se déclenche (environ 10 % au-dessus du dernier réglage de cet outil pour le transfert de volume). Par exemple, lors de la configuration, si le dernier obturateur à obturationpression réglé sur 6250 psi lorsque le couple volume était de 1,48 sur², puis entrez 1,6 sur² comme injectionle volume transférer.
- 2. Pression

dans la cavité Maintenant que les obturateurs se ferment à la pression dans la cavité, il est important de définir des sauvegardes pour éviter tout dommage si, pour une raison quelconque, le capteur ne voit pas de pression (en raison d'un problème mécanique, par exemple). Pour ce faire, entrez un point de consigne de volume de course RJG de secours dans la commande de fermeture d'obturateur de seuil. Ce point de consigne devrait être légèrement au-dessus du volume actuel d'injection auquel l'obturateur se ferme actuellement. Trouvez le volume de tir où chaque porte se ferme (à l'aide du graphique de cycle) et réglez la sauvegarde du volume d'injection de chaque cavité à environ 10 % au-dessus de cela. Cela empêche la variation de bague guide et de matériau de provoquer un transfert trop hâtif, mais empêche tout de même les dommages si la pression n'est pas détectée.

Par exemple, si les portes #3 et #4 fermer lors de la prise de vuele volume est de 1,455 sur². et portes #1 et #2 fermer près de 1,48 en², régler l'injectionle volume sauvegarde pour #3 et #4 à 1,6 en². et #1 et #2 à 1,63 en².

Empêcher la variation inter-empreinte

Il peut y avoir un cas où une goutte froide bloque le matériau de pénétrer dans une empreinte. Dans ce cas, l'empreinte bloquée n'atteindra pas sa pression de consigne et la quantité de matériau injectée ne sera pas complète. Dans une situation à deux empreintes, ceci entraîne l'ensemble du matériau dans une empreinte avant que les contrôles de secours puissent être déclenchées, endommageant peut-être gravement cette empreinte. Définissez toujours des sauvegardes appropriées dans le système CoPilot et sur la machine.

Techniques additionnelles de contrôle d'obturateur de seuil

Démarrage « en marche »

Certaines applications d'obturateur de soupape à grande vitesse pourraient fonctionner mieux si toute possibilité de bave ou d'injection lente au démarrage est évitée en ouvrant les obturateurs de soupape tardivement. La commande d'obturateur de seuil fournit deux méthodes pour ce faire, détaillées dans les sections suivantes.

Ouvrir sur Volume de course RJG

Le MOuvert sur RJG StrokeLe volume est probablement la méthode de « démarrage en cours » la plus cohérente. Un bon point de départ est le volume zéro qui sera traversé une fois que le coulisseau a atteint sa vitesse. Cela nécessite qu'une certaine décompression soit utilisée sur le processus.

✓ MISE EN GARDE Si vous utilisez des vitesses d'injection élevées avec un retard important dans l'ouverture des obturateurs, cette approche peut surpressuriser le collecteur.

Ouvert sur pression

Similaire au « ouvert chez RJG StrokeLe volume», la technique « ouvrir surpression " méthode utilisepression pour « pré-pressuriser » le canon etObliger une première injection très rapide en raison de l'accumulationpression . La seule différence est que "Pression à l'injection » serait sélectionné comme cible ouverte.

Pression Décharge

Dans certaines régions, il est important de réduire lapression le plus possible sur la pièce, cela peut réduire les variations dimensionnelles d'un bout à l'autre.

Dans un processus normal, un remplissage rapide et un emballage lent pourpression est mis en place, laissant lepression à la porte considérablement plus haut que lepression à la fin de la cavité après la fermeture de la porte.

La fermeture de l'obturateur provoque le transfert de la machine.

Pour réduire lepression gradient, utilisez l'outil de transfert $V \rightarrow P$ du système CoPilot pour permettre à la machine de transférer en attente. L'outil est réglé pour transférer la machine à tenir au pack maximumpression voulu.

Contrôle alternatif de la cavité

Le contrôle alterné des cavités est une technique permettant de réduire laserrer tonnage par remplissage, emballage et fermeture des vannes sur les cavités en séquence. Cela signifie que chaque cavité est complètement terminée (remplir, emballer et fermer) avant que la porte suivante ne s'ouvre. Avec plus de deux cavités, cela peut être fait en groupe, si nécessaire. L'inconvénient de cette méthode est que certains cyclestemps sera perdu.

Deux méthodes ont été développées pour réaliser cette technique. Dans la première méthode, une vitesse est définie pour remplir et emballer toutes les cavités. Les vannes sont ouvertes et fermées à l'aide de la cavitépression définir des points. Dans la deuxième méthode, la cavitépression les points de consigne sont également utilisés pour ouvrir et fermer les obturateurs, mais plusieursvitesses sont utilisés pour remplir et emballer chaque cavité.

Contrôle alternatif de la cavité (suite)

Méthode #1: Vitesse unique

Cette méthode utilise une seule vitesse au cours de la première étape. Avec une vitesse de remplissage plus lente, une cavité est emballée dans une cavitépression consigne, la vanne à obturateur se ferme et la cavité suivante s'ouvre. Ce processus se poursuit jusqu'à ce que toutes les cavités aient été remplies et emballées. L'avantage de cette méthode est la simplicité de la configuration du processus. Un inconvénient de l'utilisation de la méthode est que le processus s'exécute à une vitesse plus lente, ce qui peut ne pas être capable de produire des pièces de qualité.

Configuration du processus (Méthode #1)

La configuration d'un autre processus d'empreinte nécessite à la fois des paramètres de contrôle de la presse et des paramètres de contrôle du système CoPilot. Voici une méthode étape par étape pour configurer le processus avec deux cavités alternées, avec une porte dans chaque cavité. Cette procédure suppose que l'outil de contrôle d'obturateur de seuil et l'outil de transfert $V \to P$ ont été configurés et testés sur le système CoPilot.

1. Build the Shot Size

Chargez suffisamment de matériau avant levisser pour remplir et emballer les deux cavités. Dans un premier temps, commencez par remplir toutes les cavités simultanément pour déterminer la taille de votre tir. Pour ce faire, réglez les commandes à obturateur de soupape des deux cavités pour qu'elles s'ouvrent au démarrage de l'injection et se ferment lorsque l'injection vers l'avant s'éteint. Configurez ensuite un plan de remplissage uniquement (plan court) à l'aide d'un remplissage faible à moyenla vitesse. Augmentez progressivement la taille de la grenaille jusqu'à ce que les deux cavités soient capables de se remplir ; assurez-vous qu'il y a suffisamment de matériel pour l'emballage et le coussin.

Ouvrez l'outil de contrôle d'obturateur de seuil dans le logiciel CoPilot. Pour l'obturateur qui contrôle la première cavité à remplir, créez la commande d'ouverture de l'obturateur « Injection Start ». Ensuite, pour la commande de fermeture de l'obturateur de seuil, créez un "Pression at", puis choisissezpression capteur qui sera utilisé pour contrôler l'obturateur. Au départ, entrez dans une cavité bassepression point de consigne, tel que 1000 psi. Créez également un contrôle de fermeture d'obturateur pour « RJG StrokeLe volume" et entrez une valeur élevée qui ne peut pas être atteinte.

Configurez chaque obturateur de seuil restant de la même manière que la première cavité, sauf que la commande d'ouverture d'obturateur de seuil sera réglée pour s'ouvrir lorsque l'obturateur de seuil précédent se fermera. Par exemple, la configuration de la 2e vanne d'obturation serait réglée pour s'ouvrir lorsque la vanne d'obturation 1 se ferme.

- (i) **REMARQUE** Il n'y a actuellement aucune commande « vanne ouverte sur vanne fermée » dans le système Copilot. La consigne de fermeture utilisée pour la porte précédente peut être définie pour la consigne d'ouverture de la porte suivante.
- 2. Définir le remplissageLa vitesse sur la presse Avec l'outil de contrôle des obturateurs de vanne configuré, définissez un faible remplissagela vitesse et faible injectionpression sur la presse.
- ✓ MISE EN GARDE Ceux-ci doivent être réglés suffisamment bas pour que si les obturateurs ne se ferment pas, le moule ne soit pas endommagé.
- **3.** Trouver un remplissageLa vitesse etPression Où les pièces peuvent être fabriquées

Effectuez les premières prises de vue. Parfois, il faudra plusieurs prises de vue pour que les portes commencent à s'écouler correctement. Il est probable que la première cavité n'atteindra pas sa cavitépressionconsigne due au faible remplissagela vitesse etpression . Si tel est le cas, déterminez lequel de ces deux paramètres ajuster. Sur le graphique du cycle, observez l'injectionpression courbe pour voir s'il atteint l'injectionpres-

sion réglage (atteint un picpression puis s'aplatit). Si c'est le cas, augmentez progressivement l'injectionpression réglage sur la presse. Sinon, augmentez progressivement l'injectionla vitesse. Continuez ainsi jusqu'à ce que la première cavité atteigne sa cavitépression consigne. Cela devrait provoquer la fermeture de l'obturateur de la première cavité et l'ouverture de la seconde cavité. Si la pièce est encore courte, augmentez la cavitépression point de consigne (sur l'écran principal des obturateurs de seuil) pour cette cavité jusqu'à ce que la pièce soit juste pleine.

Répétez ce processus pour chaque cavité. Lorsque cela est fait, toutes les pièces doivent être presque pleines, en remplissant une à la foistemps.

4. Emballez les pièces

Une cavité à la foistemps, augmenter la cavitépression point de consigne dans la commande d'obturateur jusqu'à ce que cette cavité soit complètement remplie ; augmenter encore l'injectionpression réglage sur la presse pour ce faire. La presse doit maintenir une constantela vitesse même si plus d'injectionpression est tenu de le faire.

5. Définir les sauvegardes

Au bas du graphique de séquence du graphique de cycle, recherchez le point où le premier obturateur de seuil se ferme. Placez le curseur à ce point et lisez le RJG StrokeLe volume valeur affichée. Ajoutez 5 à 10 % et entrez cette valeur dans la clôture à RJG StrokeLe volume dans l'écran de commande d'ouverture de l'obturateur de seuil. Cela garantira que l'obturateur se fermera si, pour une raison quelconque, la cavitépression le capteur n'est pas capable de lirepression dans la cavité. Répétez cette opération pour chaque cavité.

Contrôle alternatif de la cavité (suite)

Méthode #2: Vitesse multiple

Avec cette méthode, plusieurs vitesses sont définies dans l'unité d'injection. Chaque cavité a une vitesse rapide pour remplir la pièce (pour 90%) et une vitesse lente pour emballer la pièce. Une fois la première cavité remplie, l'obturateur est fermé et l'obturateur de la cavité suivante s'ouvre. Ce processus se poursuit jusqu'à ce que toutes les cavités soient remplies et emballées. Les avantages de cette méthode incluent une plus grande flexibilité pour optimiser le contrôle et la possibilité d'utiliser un remplissage primaire élevéla vitesse, sans dépasser la consigne. Les inconvénients incluent une configuration de processus plus complexe, plus d'ajustements des points de consigne de transfert (en raison des variations de processus) et une coordination manuelle du contrôle de la vitesse avec le contrôle de l'obturateur de seuil. Il y a également plus de risque d'erreur en utilisant cette méthode si un plus grand nombre de cavités est utilisé.

Configuration du processus (Méthode #2)

La configuration d'un autre processus d'empreinte nécessite à la fois des paramètres de contrôle de la presse et des paramètres de contrôle du système CoPilot. Voici une méthode étape par étape pour configurer le processus avec deux cavités alternées, une porte dans chaque cavité. Cette procédure suppose que l'outil Valve Gates et l'outil de transfert V→P ont été configurés et testés sur le système CoPilot.

1. Build the Shot Size

Chargez suffisamment de matériau avant levisser pour remplir et emballer les deux cavités. Initialement, commencez par remplir toutes les cavités simultanément pour déterminer la taille de l'injection en réglant les commandes d'obturation des deux cavités pour qu'elles s'ouvrent au démarrage de l'injection et se ferment lorsque l'injection vers l'avant s'éteint. Configurez ensuite un plan de remplissage uniquement (plan court) en utilisant une vitesse de remplissage faible-moyenne. Augmentez progressivement la taille de la grenaille jusqu'à ce que les deux cavités soient capables de se remplir. Assurez-vous qu'il y a suffisamment de matériel pour l'emballage et le coussin.

- Configuration des obturateurs de soupape de la cavité 1
 Accédez à l'outil de contrôle d'obturateur de seuil dans le logiciel CoPilot.
 - Sélectionnez l'obturateur qui contrôle la première cavité à remplir.
 - Ajoutez une commande d'ouverture d'obturateur de seuil en sélectionnant l'option Démarrage de l'injection.
 - Ensuite, ajoutez une commande de fermeture d'obturateur et sélectionnez la méthode « Pression de la cavité » pour fermer les obturateurs, puis choisissez le capteur de pression qui sera utilisé pour contrôler l'obturateur. Initialement, entrez dans une cavitépression point de consigne suffisamment élevé pour ne jamais être atteint, comme 20 000 psi.
 - Ajoutez également une commande de fermeture d'obturateur de seuil pour le « Volume de course RJG » et entrez une valeur élevée qui ne peut pas être atteinte.
 - Enfin, ajoutez une commande de fermeture d'obturateur de seuil pour la « Fin d'injection vers l'avant ».
- 3. Désactiver les autres cavités

Pour chaque cavité restante, ne réglez aucun contrôle. Cela empêchera la vanne de s'ouvrir, vous permettant de configurer la cavité 1 uniquement à cetemps.

4. Définir la méthode de transfert

Réglez la presse pour transférer sur la fermeture ou la position du contact externe, selon la première éventualité.

- 5. Trouvez la position de transfert pour ralentirLa vitessePack Avec un remplissage bas-médiumla vitesse, trouvez la position de transfert sur la presse où la pièce est remplie à 90 %. Par exemple, avec un moule à 2 empreintes, la position de transfert doit être inférieure à la moitié de la taille totale de la grenaille.
- 6. Définir le remplissage rapideLa vitesse Effectuer un test de rhéologie dans le moule à l'aide des commandes de la machine et décider du meilleur remplissagela vitesse pour la cavité 1. Lors de l'exécution de l'étude de rhéologie, exécutez des pièces de remplissage uniquement (elles doivent être courtes, même au niveau de remplissage le plus élevéla vitesse). Une fois un remplissagela vitesse est déterminé, sélectionnez une position de transfert qui remplit la pièce à 90-95%.
- 7. Testez le transfert externe (facultatif)
 Effectuez un tir court à une seule cavité et notez le « Pic, tirLe volume" sur l'outil de valeurs de cycle précédent. Entrez une valeur d'environ 30% inférieure à celle-ci lors de la clôture de RJG StrokeLe volumecolonne pour la porte 1. Cela devrait amener le système CoPilot à transférer la presse avant que sa position de transfert ne soit atteinte, résultant en une partie plus courte et un « Peak, Shot » plus basLe volume " sur l'outil de valeurs de cycle précédent. Si la presse ne transfère pas plus tôt, vérifiez la configuration du matériel et du logiciel qui contrôlent les obturateurs de seuil.

Définir la clôture à RJG StrokeLe volume valeur à son niveau initial.

Contrôle alternatif de la cavité-Méthode#2: Vélocité multiple (suite)

Les 4 étapes suivantes sont uniquement configurées - ne fabriquez pas encore de pièces !

- 8. Définir le pack lentLa vitesse
 Ajouter une deuxième injectionla vitesse profil sur la presse,
 qui ralentit jusqu'à environ 10 % de remplissagela vitesse
 lorsque la pièce est remplie à environ 90 %. Ce deuxième profil
 se poursuivra ensuite jusqu'à ce que l'obturateur soit fermé par
 le point de consigne « Injection Forward ».
- 9. Augmenter la position de transfert sur la presse Réglez la position de transfert sur la presse afin qu'elle ne provoque pas de transfert. À ce stade, le système CoPilot doit contrôler le transfert des obturateurs de seuil, ce qui ne peut pas être fait si la position de transfert de la machine est atteinte en premier. Le moyen le plus simple est de régler la position de transfert de la machine àvisser bas.
- 10. Mettre en attentePression / Temps
 Régler la mise en attente de la machinepression à zéro et, si
 aucune commande centrale n'a besoin d'un refroidissement
 supplémentairetemps, définissez la prisetemps à zéro aussi.
 Ensuite, la machine peut commencer la récupération (visser
 marche) dès que toutes les vannes sont fermées.
- 11. Pack Cavity 1

Augmentez régulièrement (sur plusieurs coups) la fermeture de la vanne d'obturation à RJG StrokeLe volume valeur pour la porte 1 jusqu'à ce que la cavité 1 soit correctement emballée. Notez cecile volume pour définir des sauvegardes.

- **12.** Définir les sauvegardes pour la fermeture de l'obturateur de seuil de la cavité 1
 - Placez le curseur sur le graphique du cycle en ligne avec la fermeture de l'obturateur de seuil 1 et lisez la cavitépression pour le capteur de contrôle. Notez cette valeur ou laissez le curseur dans cette position, car la valeur sera utilisée pour définir la cavitépression point de consigne pour cet obturateur.

 Augmentez maintenant l'obturateur de fermeture à RJG Stroke-Le volume valeur pour la porte 1 progressivement d'environ 3% (ou moins pour éviter de trop emballer la pièce). Continuez à tirer des pièces tout en ajustant l'obturateur de fermeture à RJG Stroke-Le volume valeur jusqu'au maximumpression est atteint dans la cavité sans endommager le moule. Cette position deviendra la position de secours pour la fermeture de l'obturateur en cas d'échec du transfert hors de la cavitépression.
- 13. Fermez l'obturateur de seuil 1 à l'aide de la cavitéPression Entrez lepression au curseur pour poteau #1 dans la commande de fermeture du portail 1 àpression. L'obturateur pour cette cavité devrait maintenant commencer à se fermer de la cavitépressionau lieu de RJG StrokeLe volume. Si tel est le cas, l'obturateur de fermeture àPression pour cet obturateur de vanne sera vert lorsque l'obturateur de vanne se ferme.
- (i) **REMARQUE** RJG recommande d'enregistrer un modèle à cetemps (nommé « Remplir et emballer la cavité 1 », par exemple). Bien que le modèle ne soit plus utilisé ici, il peut être utile plus tard lorsque le processus doit être à nouveau configuré.

- **14.** Préparez-vous à configurer l'empreinte 2 À ce stade, une empreinte doit faire une bonne pièce. Maintenant c'esttemps pour mettre en place la prochaine cavité. Arrêtez la presse pendant que les étapes suivantes sont configurées.
- 15. Configurer les obturateurs de seuil de la cavité 2
 Sur l'écran de contrôle d'ouverture des obturateurs de seuil,
 configurez l'obturateur 2 pour qu'il s'ouvre lorsque l'obturateur 1 se ferme. Ensuite, configurez la porte 2 pour qu'elle se
 ferme sur RJG StrokeLe volume, lorsque l'injection vers l'avant
 s'éteint, etpression à la porte de la poste #2. La premièrepression réglage peut être assez élevé, ou l'utiliser pour éviter les
 dommages en réglant au-dessus de lapression trouvé pour la
 première cavité.
 - Ensuite, réglez l'obturateur de fermeture initial sur RJG Stroke-Le volume pour fermer la porte 2. Cela devrait être à un point où la cavité 2 est plus qu'à moitié pleine, mais toujours courte. Une façon de le faire est de prendre la vanne de fermeture à RJG StrokeLe volumevaleur pour l'empreinte 1 et ajouter la partie de remplissage uniquementle volume . Cela devrait faire une partie partiellement pleine sur laquelle tirle volume peut être ajusté jusqu'à ce que la pièce soit remplie à 90 %.

Contrôle alternatif de la cavité-Méthode#2: Vélocité multiple (suite)

- 16. Configuration de la vitesse d'injection suivante sur la presse Sur la presse, ajoutez un troisième profil de vitesse. Cela deviendra le remplissage rapidela vitesse pour la cavité 2, il peut donc être réglé sur le mêmela vitesse comme remplissage rapidela vitesse pour la cavité 1. Choisissez la position où la précédentela vitesse (pack lentla vitesse pour la cavité 1) se termine la position de transfert V2-V3 juste après le point où l'obturateur de seuil 1 se ferme. Cela se fera par essais et erreurs, mais suivre ces étapes vous aidera :
 - Sur l'outil de valeurs de cycle précédent, ajoutez la valeur « Peak, Shot Stroke ». Assurez-vous que ses unités sont affichées dans les mêmes unités que le trait sur la presse.
 - Soustrayez la valeur « Peak, Shot Stroke » de la Shot Size sur la presse. Saisissez cette valeur comme position de transfert V2-V3 sur la presse.
 - Tirez un coup. La première cavité doit se remplir et se remplir, puis la 2e cavité doit se remplir en partie avant que l'obturateur pour la 2e cavité se ferme via l'obturateur de fermeture à RJG StrokeLe volume réglage sur l'outil de commande d'obturateur de seuil.
 - Sur le graphique du cycle, placez le curseur à l'endroit où l'obturateur de vanne 1 se ferme et inspectez l'injectionLe volume courbe. Le coude dans le graphique où V2 passe à V3 devrait se produire légèrement après cela. Ajustez la position de transfert V2-V3 sur la presse jusqu'à ce qu'elle se produise juste après la fermeture du premier obturateur.

17. Ajuster la taille du plan de remplissage uniquement

Ajustez progressivement la fermeture àLe volume valeur pour la porte 2 jusqu'à ce que la cavité 2 soit pleine à 90 %.

Ensuite, ajoutez un quatrième profil de vitesse, qui sera le pack lentla vitesse pour la deuxième cavité. Lela vitesse le réglage doit être le même que le pack lentla vitesse pour la cavité 1. Pour trouver la position à transférer de V3 à V4 (remplissage rapide à compactage lent pour la deuxième cavité), notez la valeur « Peak, Shot Stroke » sur l'outil de valeurs de cycle précédent. Soustrayez-le de la taille de prise de vue sur la presse (La vitesse Changer de position = Taille du tir - « Pic, coup de feu »). Saisissez cette valeur comme position de transfert V3 à V4 sur la presse.

Ouvrez l'outil de commande d'obturateur de seuil. Continuer à augmenter la fermeture à RJG StrokeLe volume valeur pour la porte 2 jusqu'à ce que la partie dans la cavité 2 soit complètement remplie comme cela a été fait avec la cavité 1.

Sur le graphe du cycle, placez le curseur au droit de la fermeture de la porte 2 et lisez la cavitépression pour le capteur de contrôle de la deuxième cavité (dans notre exemple, "PST 2", ou Post Gate #2). Notez cette valeur ou laissez le curseur à cette position commele volume la sauvegarde est déterminée à l'étape suivante. Cette valeur sera utilisée pour définir la fermeture àPression valeur pour la deuxième cavité.

Augmentez maintenant l'obturateur de fermeture à la valeur du volume de course RJG pour l'obturateur 2 progressivement d'environ 3 % (ou moins pour éviter de sur-remplir la pièce).

Continuez à filmer les pièces tout en ajustant l'obturateur de fermeture à la valeur du volume de course RJG jusqu'à ce que vous obteniez la pression maximale dans la cavité sans endommager le moule. Cette position deviendra la position de secours pour la fermeture de l'obturateur en cas d'échec du transfert de la pression de la cavité.

Entrer lepression au curseur du deuxième obturateur (qui a été noté plus tôt) dans l'obturateur de fermeture àpression réglage pour la porte 2. La porte de soupape pour cette cavité devrait maintenant commencer à se fermer de la cavitépression au lieu de fermer l'obturateur à RJG StrokeLe volume . Si tel est le cas, le réglage de fermeture de l'obturateur de seuil à la pression pour cet obturateur de seuil sera vert lorsque l'obturateur de seuil se fermera.

À ce stade, de bonnes pièces doivent être fabriquées dans deux cavités.

(i) **REMARQUE** RJG recommande d'enregistrer un modèle à cetemps (nommé « Remplir et emballer la cavité 2 », par exemple). Bien que le modèle ne soit plus utilisé ici, il peut être utile plus tard lorsque le processus doit être à nouveau configuré. S'il y a plus de cavités, répétez le processus pour la deuxième cavité jusqu'à ce que toutes les cavités soient en production. Lorsque cela est fait, ajustez le moule fermer temps pour obtenir le refroidissement requis sur la cavité finale (celle avec le moinstemps disponible). Ralentir levisser RPM pour arrêter levisser près de la fin du mouleserrétemps avec un peutemps épargner pourvisser Courstemps variation.

Contrôle alternatif de la cavité (suite)

Faire des ajustements de processus

Ce processus se compose de deux parties dans l'ordre, donc les ajustements au processus doivent être bien pensés; apporter des modifications à une partie peut avoir un effet sur l'autre.

1. GrandePressionAugmentations sur le pack Cavity 1Pression Comme la meutepression sur la cavité 1 est augmenté, plus de tirle volume sera nécessaire pour atteindre le nouveaupression . Finalement, la porte 1 se fermera lorsqu'elle atteindra sa sauvegardele volumeet ne plus être contrôlé parpression . Ne pas augmenter la sauvegardele volumepour le portail 1. La machine est réglée surla vitesse vers le haut à la position de sauvegarde, il commencerait donc à emballer la cavité 1 à 80% la vitesse . Si la cavité 1 a besoin de plus de packpression, à la fois la position de la machine pourla vitesse et la sauvegardele volume doivent être augmentés simultanément. Dans ce cas, il est préférable de revenir à la fin des étapes de configuration de la cavité 1, en fermant la cavité 2 et en terminant la cavité 1 comme si vous recommenciez depuis le début.

2. Le coussin est trop petit

Si le vérin touche le fond avant ou très près de la fin de la cavité 2, ajoutez un coussin. Ajoutez la même quantité à la position de transfert pour chaque profil de machine sur la commande de la machine uniquement. Assurez-vous d'exécuter levisser pour charger jusqu'à la nouvelle taille de prise de vue. Quand levisser s'arrête, le système CoPilot trouvera le nouveau zéro pour démarrer l'injection et tout le tirle volume les sauvegardes sur le contrôle obturateur resteront les mêmes.

3. Le coussin est trop grand

La réduction du coussin est l'inverse de l'ajout comme décrit ci-dessus. Soustrayez le coussin supplémentaire de chaque étape des paramètres de la machine. Cependant, si le canon est chargé à 145 mm et que la taille du tir est réduite à 140 mm, il reste encore 5 mm supplémentaires dans le canon. Afin de ne pas trop remplir les cavités, purger et recharger lesvisser pour que le système CoPilot connaisse le nouveau zéro (visser arrêt) et de sorte que l'excès de matière soit retiré du canon.

Notes sur les valeurs sommaires

Étant donné que le volume de remplissage (défini dans le graphique du cycle) ne fournit que le temps de remplissage de la première cavité, la valeur « viscosité effective, remplissage » s'applique uniquement à cette cavité. Les valeurs « Valeur moyenne, Vitesse de remplissage » et le « Taux de remplissage » s'appliquent aussi de façon similaire.

Les valeurs «Valeur moyenne, Vitesse de compactage » et « Taux de compactage » ne sera valide que lorsque vous remplissez l'empreinte 1 seulement (empreinte 2 ne s'ouvre jamais). Ces valeurs peuvent toujours être utilisées pour transférer le processus vers une autre machine et correspondre au taux d'emballage, au moins pour la cavité 1.

La valeur « Temps du processus , Remplissage d'empreinte » pour la seconde empreinte n'a guère de sens. Mais le « Temps de processus, Compactage d'empreinte » devrait fonctionner sur la seconde empreinte, car c'est le temps entre une empreinte pleine (1000 psi à la fin d'empreinte, Réglages de séquence par défaut) pour une empreinte compactée (98% du pic post seuil). Les pics et les intégrales par cavité fonctionnent comme ils le feraient normalement.

Le temps de refroidissement de la cavité 1 est beaucoup plus élevé que celui de la cavité 2, donc un temps de refroidissement beaucoup plus court sur la cavité 2 serait utilisé comme le « pire des cas ». La valeur « Temps de séquence, Refroidissement de plastique » s'applique seulement à l'empreinte 1.

Pré-ouverture des portes lentes

Les obturateurs de vanne ne fonctionnent pas instantanément - il y a toujours un certain retard de solénoïdetemps, même avec l'hydraulique. Avec les vannes pneumatiques, il est possible d'avoir un délai de 0,25 seconde ou plus entre letemps le système Copilot indique à la vanne de s'ouvrir ou de se fermer et letemps il s'ouvre ou se ferme en fait.

Dans un exemple, l'ouverture de la porte 2 a pris tellement de temps après la fermeture de la porte 1 qu'il y a eu une période pendant laquelle les deux portes ont été fermées. Comme la machine n'a pas ralenti, elle a continué à comprimer le matériau dans le baril. Lorsque la deuxième porte a ouvert cette accumulation depression provoqua une sorte d'« éclatement » de matière et des rougeurs apparurent à la porte.

Afin d'éviter cela, la deuxième porte doit s'ouvrir tôt. Une autre méthode d'ouverture de la porte 2 a été ajoutée, en particulier l'ouverture de la porte 2 lorsque la porte 1 atteint une cavitépression.

L'ouverture de la porte 2 est réglée à 250 psi en dessous de la fermeture de la porte 1 (3770 psi). Si la consigne de fermeture-pression du portail 1 est réglé, consigne de fermeturepression de la porte 2 doit également être ajusté pour maintenir le timing de « pré-ouverture » correct.

Contrôle alternatif de la cavité—Faire des ajustements (suite)

Contrôle du fard à joues

En plus de la situation de « porte lente » décrite dans «Pré-ouverture des portes lentes» on page 184, il est souvent nécessaire de démarrer lentement la partie de remplissage du processus de chaque cavité. Cela se fait facilement pour la cavité 1 en ajoutant unla vitesse au départ comme suit : Si le packla vitesse pour la cavité 1 est le même que le lentla vitesse requis pour réduire le rougissement dans la cavité 2, généralement ce petit pack extra lent au début du remplissage de la cavité 2 peut être utilisé. Sinon, il faudra peut-être y insérer un profil lent. S'il est plus lent que le pack de la cavité 1, cela deviendra un problème car la position de l'endroit dans le profil de contrôle de la machine est l'emplacement de l'interrupteur de la porte.

Multi-portail & Problèmes multi-empreintes

Lorsque quatre cavités sont remplies et emballées en deux paires, réglez les obturateurs de soupape de la deuxième paire d'empreintes pour qu'ils s'ouvrent lorsque les obturateurs de soupape des deux premières cavités se sont tous deux fermés, en suivant les étapes ci-dessous :

- 1. Configurer le contrôle d'ouverture pour la porte #3 Sur l'écran de contrôle d'ouverture d'obturateur de vanne pour l'obturateur #3, choisissez les portes qui doivent être fermées pour que la porte #3 ouvrir.
- 2. Configurer le contrôle d'ouverture pour la porte #4

 Sur l'écran de contrôle d'ouverture d'obturateur de vanne pour la vanne n°4, choisissez les vannes qui doivent être fermées pour que la vanne n°4 s'ouvre.
- (i) **REMARQUE** Cette configuration peut également s'appliquer aux applications à cavités multiples où chaque cavité contient deux ou plusieurs portes.

Comme pour les cavités indépendantes, à mesure que les cavités commencent à se fermer, le taux d'emballage sur les cavités ouvertes restantes augmentera.

Glossaire

Fois

Temps de Refroidissement

Temps écoulé nécessaire pour que la masse fondue atteigne sa dureté Vicat. Le temps de refroidissement commence immédiatement après la fin du temps de maintien et se poursuit jusqu'à ce qu'une pièce puisse être éjectée du moule en toute sécurité tout en restant dimensionnellement stable.

Un temps de refroidissement trop court peut entraîner des pièces collées et des pièces dont les dimensions sont insuffisantes; Un temps de refroidissement trop long peut également créer des pièces présentant des dimensions insuffisantes et allonger inutilement les temps de cycle.

Le CoPilot calcule ce signal à la fin du front descendant du moule fermé et le désactive à l'une des opérations suivantes (par ordre de priorité):

- · la décompression commence
- fin du temps de cycle
- · bord montant du moule fermé

Temps de Cycle

Le temps nécessaire à un système de moulage par injection pour mouler une pièce et revenir à sa position / état d'origine.

Temps de Remplissage

Le temps nécessaire à un système de moulage par injection pour mouler une pièce et revenir à sa position / état d'origine. Le signal de remplissage est calculé par le CoPilot comme activé au front montant de l'injection vers l'avant et désactivé à la fin du transfert.

Le temps de remplissage dépend de la distance et de la vitesse de déplacement de la vis; si la distance de vis ou la vitesse de vis change, ou les deux, le temps de remplissage changera également.

Le temps de remplissage doit rester constant car la machine compense automatiquement en modifiant d'autres paramètres si nécessaire. Si la compensation automatique ne fonctionne pas correctement, les valeurs de processus telles que le temps de remplissage peuvent être hors de la plage acceptable.

Temps d'Emballage/d'Emprise

Compactage

Le remplissage de la ou des cavités du moule le plus complet possible sans provoquer de contraintes excessives sur le moule ou provoquer l'apparition de bavures sur les pièces finies.

Maintien

La durée pendant laquelle la pression de maintien est appliquée; le temps de maintien se termine lorsque la ou les vannes scellent tout le matériel qui a été emballé dans la ou les cavités. Si le temps de maintien est réglé trop court, des marques d'évier peuvent apparaître près de la porte (les portes peuvent ne pas sceller), ou des pièces sous-dimensionnées peuvent en résulter.

Le CoPilot calcule le signal de maintien au front descendant de l'injection vers l'avant ou au front descendant du deuxième étage.

Temps de Reprise

Durée de rotation de la vis, création d'une prise de vue et retour à la position d'origine.

Courses

Matelas

Le matériau restant devant la vis après la fin du mouvement vers l'avant; elle est mesurée comme la distance linéaire entre la buse et la vis une fois que la vis a arrêté le mouvement vers l'avant. Le matériau reste entre la vis et la buse, transférant la pression de la vis pour maintenir le pack et maintenir les pressions à l'intérieur du moule. L'emballage du moule ne peut se faire sans coussin.

Vérifiez que la taille de la prise et la position de transfert sont conformes aux spécifications avec les paramètres de processus. Augmentez la taille de tir et la position de transfert pour ajuster le coussin.

Décompression

La distance à laquelle la vis se rétracte après la fin de la rotation de la vis, utilisée pour soulager la pression plastique construite devant la vis pendant la rotation. Si la décompression est trop faible, le plastique peut couler hors de la buse dans la buse d'injection, provoquant un blocage dans la buse ou la bague, ou provoquant l'injection de plastique froid dans la ou les pièces. Si la décompression est trop élevée, de l'air peut pénétrer dans le courant de fusion, provoquant la formation de bulles ou d'évasements dans la ou les pièces.

Encore appelé aspiration inversée.

Taille d'Injection

La quantité de matière du début de l'injection à la position de transfert. La taille de la grenaille doit être de 20 à 80% de la capacité du canon.

Position de Transfert

La position à laquelle la vis passe du contrôle de la vitesse au contrôle de la pression, généralement lorsque la pièce est remplie à 95–99%.

Le point où la machine passe du remplissage du moule avec contrôle de la vitesse à l'emballage du moule sous pression. Ce point de consigne sur la machine est déterminé lors de la configuration. Si cette valeur est augmentée, il en résultera moins de plastique injecté dans le moule et peut entraîner des pièces qui sont courtes, ont des éviers ou sont dimensionnellement incorrectes. La diminution de cette valeur entraînera des pièces plus grandes et potentiellement un flash.

Aussi connu sous le nom de vitesse à la pression, ou V-to-P V \rightarrow P.

Les changements de pression de transfert sont le signe de changements de viscosité.

Pressions

Pic Moyen

La moyenne de la pression la plus élevée détectée par un groupe de capteurs de pression de cavité particulier; peut être un pic moyen PG, un pic moyen MID ou un pic moyen EOC.

Contre-Pression

La pression appliquée par l'unité d'injection à l'arrière du cylindre d'injection sous forme de pression plastique est établie devant la vis. La pression du plastique doit être supérieure à la contre-pression, sinon la vis cale; l'augmentation de la contre-pression peut diminuer la variation de la récupération de la vis.

La contre-pression augmente la température de fusion et contribue au mélange homogène du matériau. Lorsque la contre-pression augmente, le temps de fonctionnement de la vis augmente et peut allonger le temps de cycle. La contre-pression détermine le volume du prochain coup.

Equilibre de Pointe

Un calcul mathématique utilisant la gamme et la moyenne qui tient compte de la pression de pointe dans chaque cavité afin de déterminer un écart de qualité entre les cavités. Généralement, l'équilibre de crête est utilisé pour définir des alarmes ou des avertissements dans le logiciel, souvent sans tri.

A la fin de chaque prise (limite d'intégration ou fin de course de la vis), le logiciel calcule toutes les valeurs de base qui composent l'équilibre. L'exemple suivant utilise des capteurs EOC:

Tout d'abord, le logiciel calcule les valeurs de crête EOC pour chaque capteur EOC. Le logiciel calcule ensuite la portée de ces capteurs:

Plage du pic EOC = pic EOC le plus élevé - pic EOC le plus bas Dans le même temps, le logiciel crée une moyenne des valeurs de crête pour chaque capteur:

Le logiciel calcule ensuite le pourcentage de pic d'équilibre en utilisant la plage et les moyennes déjà trouvées:

% D'équilibre de crête EOC
$$\frac{2}{\text{Moyenne de Pointe EOC}} \times 100$$

Pression de Remplissage

La pression requise pour remplir la cavité / les cavités de la taille du tir à la position de transfert. La pression de remplissage varie d'un coup à l'autre en raison de la viscosité du matériau.

La pression de consigne d'injection du premier étage ne doit jamais être atteinte pendant le remplissage; il doit être réglé plus haut que la pression requise pour remplir le moule. Si la pression d'injection du premier étage est atteinte, la machine ne pourra pas compenser les changements de viscosité.

Pression de Maintien

La pression utilisée pour retenir le matériau dans la / les cavités après le remplissage de la pièce. Si la pression de maintien est trop faible, la pièce pourrait être sous-dimensionnée ou présenter des défauts esthétiques tels que des éviers ou des courts-circuits; si la pression de maintien est trop élevée, la pièce peut être surdimensionnée, se coincer dans le moule ou présenter des défauts esthétiques tels que des repères de poussée ou de traînée.

Crête

La pression la plus élevée détectée par le capteur de pression de cavité particulier; peut être un pic post-grille, un pic au milieu de la cavité et / ou un pic de fin de cavité.

Pression du Plastique

La pression réelle du plastique dans la machine de moulage par injection pendant l'injection.

Viscosité effective

Une mesure relative de la résistance au remplissage d'un moule spécifique pour une combinaison de moule, machine et buse, y compris les changements de viscosité du matériau, les obstructions dans les canaux d'écoulement du moule ou de la machine et les changements de température du matériau, du moule ou des canaux chauds. La viscosité efficace reflète les problèmes provenant d'un large éventail de causes et constitue un outil puissant pour détecter les problèmes de processus.

Viscosité de la Matière

Résistance à l'écoulement d'un polymère non newtonien due au frottement interne. Plus la viscosité du matériau est élevée, plus il aura de résistance à l'écoulement; plus la viscosité du matériau est faible, moins il aura de résistance à l'écoulement.

Lorsque la viscosité du matériau change, certaines valeurs de processus, telles que la pression de remplissage, sont affectées. Cependant, le temps de remplissage doit rester constant car la machine compense automatiquement en modifiant d'autres paramètres si nécessaire. Si la compensation automatique ne fonctionne pas correctement, les valeurs de processus telles que le temps de remplissage peuvent être hors de la plage acceptable.

Formules

Rapport d'Intensification (Ri)

Si l'entrée où la pression est appliquée (cylindre d'injection) a une surface en pouces carrés plus grande que la zone en pouces carrés de sortie (vis) où la pression est dirigée, la pression de sortie sera supérieure à la pression d'entrée.

Ri = Surface du cylindre d'injection (po2) ÷ Surface de la vis (po2)

Exemple: Le rapport d'intensification pour une machine de moulage par injection avec une surface de cylindre d'injection de 50 po2 et une surface de vis de 5 po2 est de 50 po $2 \div 5$ po2 = 10 ou 10: 1.

Pression du Plastique

La pression du plastique est calculée en multipliant la pression du système en livres par pouce carré (psi) par le rapport d'intensification de la machine de moulage par injection (Ri) - cela ne s'applique qu'aux machines hydrauliques.

ppsi = Pression du système (psi) x Ri

Exemple: La pression plastique d'une machine de moulage par injection avec 1 000 psi et un rapport d'intensification de 10 (10: 1) est de 1 000 psi \times 10 = 10 000 psi.

Viscosité Effective

La viscosité effective d'un matériau est calculée en multipliant le temps de remplissage en secondes (s) par la pression de transfert en pression plastique par pouce carré (ppsi).

Viscosité effective (psi / s) = temps de remplissage (s) x pression de transfert (ppsi)

Exemple: avec un temps de remplissage de 0,128 s et une pression de transfert de 16 940 psi, la viscosité effective d'un matériau est de 0,128 s x 16 940 ppsi = 2 168 psi / s.

Sigma (Ecart Type)

Sigma σ (écart type) est calculé en trouvant la moyenne d'un groupe de données, puis en calculant la variance (la taille de propagation du groupe de données par rapport à la moyenne) à partir de cette moyenne et de ce groupe de données, et enfin en trouvant la racine carrée de la variance.

Moyenne = tous les points de données / nombre de points de données

Ensuite, Variance = (somme de chaque (point de données - moyenne)²)/(number de points de données - 1)

Ensuite, sigma = Îcart

Sigma (
$$\sigma$$
) =
$$\sqrt{\frac{\left(\sum_{i=1}^{n} (x_{je} - \dot{x})^2\right)}{n-1}}$$

Ù

x_{je} = valeur du i^{ème} point dans l'ensemble de données
 X = la valeur moyenne de l'ensemble de données
 n = le nombre de points de données dans l'ensemble de données

MOULAGE DÉCOUPLÉ (DECOUPLED MOLDING®)

Une méthode de contrôle de procédé qui étudie comment les commandes de la machine sont utilisées pour remplir et compacter le plastique dans un moule. Dans un processus découplé, une abondance de pression de premier étage est utilisée et la phase de remplissage (vitesse) est séparée de la phase de remplissage (pression).

MOULAGE DÉCOUPLÉ II

Utilise la Pression et le Temps

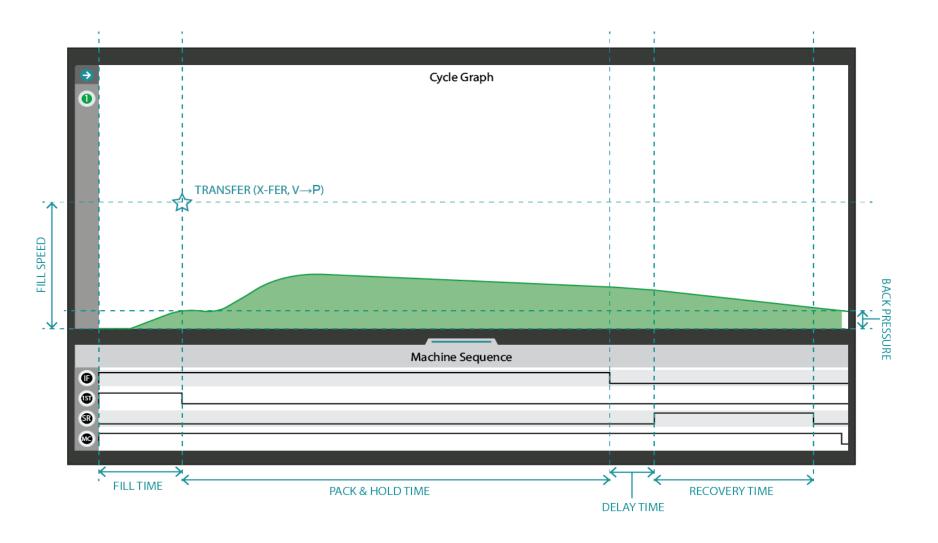
Remplissez le moule aussi rapidement que la qualité le permet et transférez par position de vis lorsque les cavités sont remplies à 95–98%. La masse fondue se décompresse et la vis ralentit juste avant que les cavités ne se remplissent; La pression de la deuxième étape (maintien) est utilisée pour terminer le remplissage et le conditionnement des pièces.

MOULAGE DÉCOUPLÉ III

Utilise la vitesse et la pression dans la cavité

Remplir le moule rapidement et profiler par la position de la vis. Lorsque les cavités sont pleines à 85-90%, passez à un stade de charge lente et contrôlée. Le compactage est terminé lorsque le transfert de pression dans la cavité ou de position de la vis termine le conditionnement de la ou des pièces.

Cycle Graph LENGTH

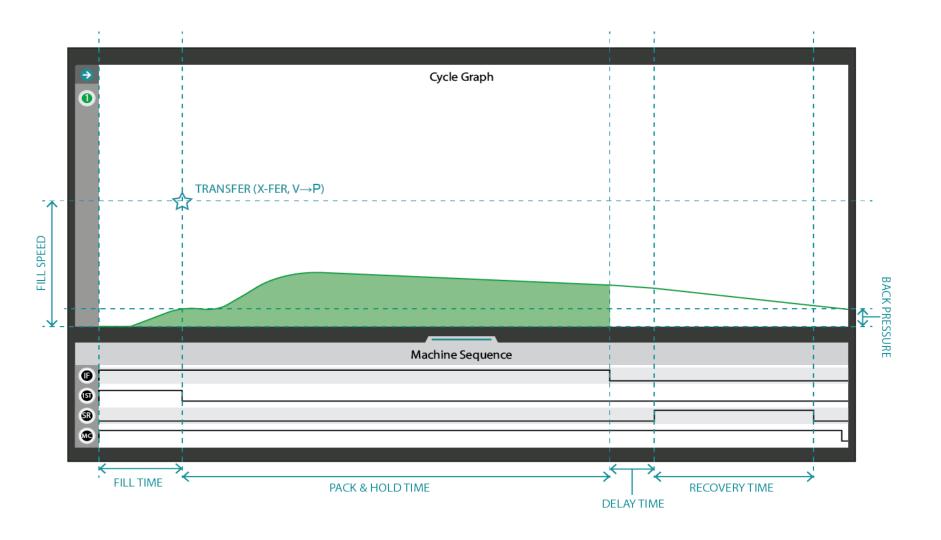

Glossaire (suite)

Intégrales

Exemple: avec un temps de remplissage de 0,128 s et une pression de transfert de 16 940 psi, la viscosité effective d'un matériau est de 0,128 s x 16 940 ppsi = 2 168 psi / s. Les intégrales de pression et de volume dans la cavité sont calculées en utilisant la surface totale sous les courbes de pression ou de volume vues sur le graphique de cycle pendant chaque cycle. Le calcul intégral commence au début du cycle; la fin définie du calcul de l'intégrale est appelée *limite d'intégration*.

Les intégrales sont utiles pour détecter les changements de poids ou de dimensions des pièces. Un capteur de pression de cavité détecte les pressions d'injection, de conditionnement et de maintien du matériau s'écoulant dans la cavité, par conséquent, toute la plage de pressions détectée par le capteur tout au long du cycle est une indication directe de la quantité de matériau qui a été injectée, emballée et tenu dans la cavité.

S'il y a un changement dans la pression / quantité de matière injectée, emballée et maintenue dans la cavité, il y aura un changement dans le poids et / ou les dimensions de la pièce qui sera reflété dans l'intégrale.



Cycle Intégral

Une intégrale de cycle est calculée en utilisant l'aire sous une courbe de cycle de pression de cavité pendant un cycle; la limite d'intégration de l'intégrale de cycle est la fin du signal de séquence de la machine serrée dans le moule. Ci-dessous, ombrée en vert, une représentation visuelle d'une intégrale de cycle de la courbe de pression de la cavité post-grille.

Le nombre entier de cycle comprend toute la pression détectée par le capteur de pression de cavité multipliée par le temps pendant lequel le capteur a détecté la pression avant que le signal de serrage du moule ne s'éteigne.

Injection Intégrale

Une intégrale d'injection est calculée en utilisant l'aire sous une courbe de cycle de capteur de pression de cavité pendant un cycle; la limite d'intégration de l'intégrale d'injection est la fin du signal de séquence de la machine d'injection avant. Ci-dessous, ombrée en vert, une représentation visuelle d'une intégrale d'injection de la courbe de pression de la cavité post-grille.

Le nombre entier d'injection comprend la totalité de la pression détectée par le capteur de pression de cavité multipliée par le temps pendant lequel le capteur a détecté la pression avant que le signal d'injection avant ne s'éteigne.

EMPLACEMENTS/BUREAUX

ALLEMAGNE RJG GERMANY

Karlstein, Germany

sales@de.rjginc.com

de.rjginc.com

Tél.: +49 (0) 6188 44696 11

REPRÉSENTANTS RÉGIONAUX

ÉTATS-UNIS	RJG USA (SIÈGE SOCIAL) 3111 Park Drive Traverse City, MI 49686 P +01 231 947-3111 F +01 231 947-6403 sales@rjginc.com www.rjginc.com	IRLANDE/UK	RJG TECHNOLOGIES, LTD. Peterborough, England P +44 1733-232211 sales@ie.rjginc.com www.rjginc.co.uk	CORÉE	CAEPRO Séoul, Corée Tél.: +82 2113 1870 sales@ko.rjginc.com www.caepro.co.kr
MEXIQUE	RJG MEXICO Chihuahua, Mexico Tél. +52 614 424228 1sales@es.rjginc.com es.rjginc.com	SINGAPOUR	RJG (S.E.A.) PTE LTD Singapore, , République de Singapour P +65 6846 1518 sales@sg.rjginc.com en.rjginc.com	INDE	VINAYAK ASSOCIÉS Neraluru, Bangalore P +91 8807822062
FRANCE	RJG FRANCE Arinthod, France Tél.: +33 384 442 992 sales@fr.rjginc.com fr.rjginc.com	CHINE	RJG CHINACHENGDU Chengdu, Chine Tél.: +86 28 6201 6816 sales@cn.rjginc.com zh.rjginc.com	TAÏWAN	WISEVER INNOVATION CO. LTD. Taïwan City, Taïwan P +88 6927999255