

Module d'entrée séquentielle Lynx™ 7-Canaux montés en surface

ID7-S-SEQ

L'ID7-S-SEQ est un module d'entrée séquentielle montable en surface qui agit comme interface entre la machine en opération et le Système $eDART^{TM}$. Avec le module de séquence, il est nécessaire de câbler tous les signaux de la machine. Le logiciel $eDART^{TM}$ prends ce qui est facilement disponible

à partir de la machine et dérive le restant. C'est important en mettant en œuvre un réseau ou en installant sur une base portable parce que souvent les signaux ne sont pas facilement disponibles.

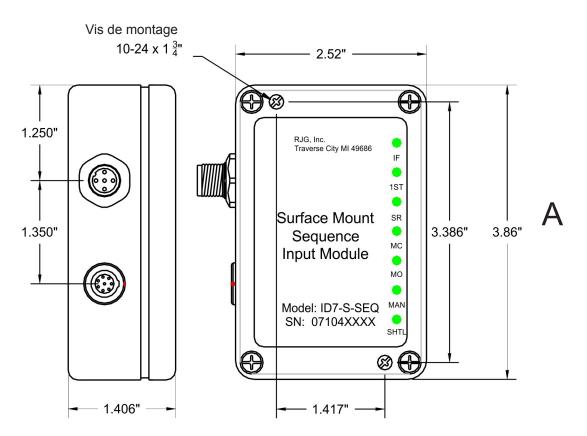


Figure 1 : Lvnx™ 7 - Module d'entrée séquentielle de canaux - A: ID7-S-SEQ B: C-ID7-LX-4M

RJG, Inc. eDART™ 1 ID7-S-SEQ Rév. 1.0

Les signaux numériques sont connectés au Module de séquence à travers le connecteur à huit conducteurs (voir Figure 1). Voir le Tableau 1 pour le brochage de sortie des connexions. Ces signaux peuvent être pris directement sur le contrôleur de la machine et peut fonctionner à 24VDC.

Connexion	Fonction	
Broche 1	Avancer INJ	
Broche 2	1er étage	
Broche 3	Rotation de la vis	
Broche 4	Moule serré	
Broche 5	Ouverture de moule	
Broche 6	Manuel	
Broche 7	Position de navette	
Broche 8	Commun d'entrée	

Tableau 1 : Brochage de sortie du connecteur du module d'entrée séquentielle

Spécifications Techniques			
Alimentation électrique (fournie par l'eDART)	12VCC		
Appel de courant	45mA		
Tension d'entrée maximum absolue	36VDC		
Déclenchement minimum pour la tension	18VDC		

Tableau 2 : Spécifications techniques du Module d'entrée séquentielle

Le module séquentiel peut être interfacé avec la carte de sortie de la machine tel qu'illustré dans la Figure ci-dessous. Voir le Tableau 2 pour les plages de tension. Le Module séquentiel fait entrer ces signaux de tension en utilisant un circuit opto-isolateur afin d'assurer l'isolation complète par rapport au contrôleur de la machine.

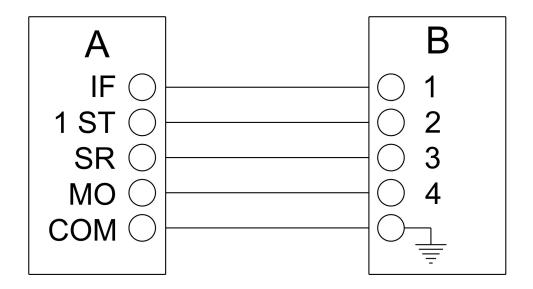
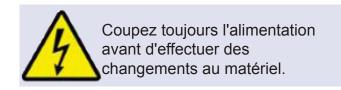



Figure 4 : Interfaçage du module d'entrée avec une carte de sortie de la machine

Signaux de la machine de câblage

Afin d'effectuer les calculs importants nécessaires à un processus de moulage par injection réussi, l'eDART™ doit avoir des signaux séquentiels précis du contrôleur de la machine. Les signaux indiquent au eDART™ lorsque des événements importants se produisent pendant le cycle de la machine et ils aident à synchroniser les signaux provenant de

l'hydraulique et des capteurs de pression du moule pour les actions de la machine pour l'affichage dans le logiciel.

Le Tableau 4 présente les détails des signaux en ordre d'importance pour le logiciel. Si aucun de ces signaux n'est valable, veuillez contacter votre représentant de RJG, Inc. pour les alternatives ou plus d'information.

Signal de la machine	Câbler à	Devrait s'allumer lorsque	Devrait s'arrêter Iorsque	Objet
Rotation de la vis	MV	Le moteur de vis démarre	Le moteur de la vis s'arrête	Direction de la course, zéro, information sur la variation du matériau (requise pour le contrôle)
Injection vers l'avant	IA	L'Injection démarre	Le temps de maintien cesse	Recherche les pointes, la pression de maintien, etc. (requis pour le contrôle)
Le moule est serré	MF	Le moule est serré contre la pression	Le moule s'entrouvre	Temps de cycle précis et limite d'intégration (réinitialise les adaptateurs piézoélectriques)
Le muverture s'ouvre	MO	Le moule commence à ouvrir	Le moule cesse l'ouverture	Détection de pièce pincée (réinitialise les adaptateurs piézoélectriques)
Première phase	1 ST	Début de l'injection (Vélocité)	Transition à pression (maintien)	Crée l'injection interne vers l'avant, compacte et en 2-phases, "Remplir" (FILL)
Mode manuel	MAN	La machine est en mode manuel (pour configuration)	La machine st en mode automatique ou semi-auto- matique	Prévient le décompte des pièces en mode manuel.
Position de navette	SHTL	Devrait être actif au début du cycle - position 2	Devrait être actif au début du cycle - position 1	Détecte la position du moule lors de moulage par navette à 2-positions
Le moule se referme	N'importe quel	Le moule commence à fermer	Le moule touche ou la bride se serre	Le temps du cycle avec l'ouverture du moule (réinitialise les adaptateurs piézoélectriques)
Moule ouvert	N'importe quel	Le moule atteint la position ouverte	Le moule commence à fermer	Temps de cycle précis et limite d'intégration (réinitialise les adaptateurs piézoélectriques)
Deuxième phase	N'importe quel	Transition à pression (maintien)	Fin du maintien (fin d'injection)	Crée l'injection interne vers l'avant et le compactage

Tableau 3 : Détails du chronométrage de séquence de la machine